Getting Started with
the Java 3D™ API

Chapter 1

Getting Started with Java 3D

© 1999 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A

All Rights Reserved.
The information contained in this document is subject to change without notice.

SUN MICROSYSTEMS PROVIDES THIS MATERIAL "AS IS" AND MAKES NO WARRANTY OF ANY
KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SUN MICROSYSTEMS SHALL
NOT BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES (INCLUDING LOST PROFITS IN CONNECTION WITH THE FURNISHING, PERFORMANCE
OR USE OF THIS MATERIAL, WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL
THEORY).

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY MADE TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN THIS
PUBLICATION AT ANY TIME.

Some states do not allow the exclusion of implied warranties or the limitations or exclusion of liability for
incidental or consequential damages, so the above limitations and exclusion may not apply to you. This warranty
gives you specific legal rights, and you al'so may have other rights which vary from state to state.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL purposes and
without fee is hereby granted provided that this copyright notice appearsin all copies.

This documentation was prepared for Sun Microsystems by K Computing (530 Showers Drive, Suite 7-225,
Mountain View, CA 94040, 770-982-7881, www.kcomputing.com). For further information about course
development or course delivery, please contact either Sun Microsystems or K Computing.

Java, JavaScript, Java 3D, HotJava, Sun, Sun Microsystems, and the Sun logo are trademarks or registered
trademarks of Sun Microsystems, Inc. All other product names mentioned herein are the trademarks of their
respective owners.

Getting Started with Java 3D

Table of Contents

Chapter 1:

GELLING SEAME......eeeeeeeie ettt h e ae et e b e e ae e e e e e b e e e be e s an e e beeeseesaneeneeannennnean 1-1
VIV o N = V= B I TSRS 1-1
1.2 THEJAVA 3D AP ...ttt 1-2
1.3 BUilding @8 SCeN€ Graphcocueiiiiiiieieeee e e 1-2

1.3.1 HighLevel Java3D APl Class HIErarChycccooiiiiiiiieiic e 1-7
1.4 Recipe for Writing Java 3D PrOgramS........coeucueieiieeeiieeeeieeesteeesieeesseeeeseeeesseeesnneeesseeesneeeenseeesns 1-8
141 A Smple Recipe for Writing Java 3D Programs............ccceeieerienieenee s 1-9
1.5 Some Java 3D TEMINOIOGYcocueeiriiriieiieiee ittt n e n e e nnneens 1-12
1.6 Simple Recipe Example: HElOJAVEBDA...........coviiiieie et 1-13
1.6.1 Java3D Classes Used in HEl0JaVa3Da...........ccoviiiieiieiieeeeecsee e 1-16
1.7 ROtEING the CUDE........oiiieie e n e sneennne e 1-19
1.7.1 Combination of Transformations Example: HelloJava3DDb............ccoooveiieiiiiiiciiesecnee 1-20
1.8 Capabilities and PerformancCe.............oouiiiiiiiiii e 1-22
1.8.1 COmPIliNG CONENES.......cccueiiuiiitieieesee st et n e s e e sin e e nneesneennneens 1-23
1.8.2 CapabilitiES.... ..o 1-24
1.9 Adding ANiMation BENAVION..........coiiiiiiiiieiee it 1-25
1.9.1 Specifying ANIMation BENAVIONcciiiiiiieiieiii e 1-26
1.9.2 Time Varying Functions: Mapping a Behavior t0 TIME........cccooveiieriieiienee e 1-27
1.9.3 SChedUIING REJION ...t n e e nnneen 1-27
1.9.4 Behavior Example: HEOJAVABDCcoiiiiiiiiieeeeeee e 1-28
1.9.5 Transformation and Behavior Combination Example: HelloJava3Dd............ccccoeveeieennens 1-30
1.10 Chapter SUMIMAIYeeeiueeeeeeieeeteessee st et e sseessee et seesaeeeseeaseesaeesneesneesseeeneeaneennreeneennnennneans 1-33
S | = OO T USSP PRTPRPPPRRPRN 1-33

The Java 3D Tutoria 1-i

Getting Started with Java 3D

Figures

Figure 1-1 Symbols Representing Objects iN SCENe Graphs..........cooviiieeieerienieesee e 1-4
Figure 1-2 First Scene Graph EXAMPIE..........oo it s 1-5
Figure 1-3 Example of an lllegal Scene Graph (N0t aDAG)......ccviiiiiiieiieieee e 1-6
Figure 1-4 Fix for lllegal Scene Graph Of FIQUIE 1-3........ccoiiieiieiieeeeee e 1-6
Figure 1-5 An Overview of the Java 3D APl Class HIErarchycocoeiieiiiiiieie e 1-8
Figure 1-6 Recipe for Writing Java 3D PrOQramScooiiiriiiee e eseee e e et eesneeeeneens 1-9
Figure 1-7 A SimpleUniverse Object ProvidesaMinimal Virtual UniVerse...........ccccoeverienieenecnnens 1-10
Figure 1-8 Simple Recipe for Writing Java 3D Programis..........cceeceeeiieeeniee e sieeeseiee e seee e 1-10
Figure 1-9 Conceptua Drawing of Image Plate and Eye Position in a Virtual Universe............cc......... 1-11
Figure 1-10 Conceptual RENTErer PIrOCESS...........ei ittt e st e e eneeeenees 1-13
Figure 1-11 Scene Graph for HelloJava3Da EXamplecoviiiiiieiiiieeeee e 1-16
Figure 1-12 Image Produced by HEIlOJAVEBDA...........cooiiiiiiieiieeee e 1-16
Figure 1-13 Scene Graph for Content Branch Graph Created in Code Fragment 1-5..........ccocvevieniene 1-20
Figure 1-14 Scene Graph for HelloJava3Dbh EXamMPIe..........ooiiiiiiiiiieieeeese e 1-22
Figure 1-15 Image of the Rotated ColorCube Rendered by HelloJava3DDc.cveiveiiineiiicnieniee 1-22
Figure 1-16 Conceptual Example of the Result of Compiling a Scene Graph...........cccceviiiiiiieiiciies 1-23
Figure 1-17 Recipe for Adding Behaviorsto aJava 3D Visua ODJeCtS..........ccccvviceriieniiieiee e 1-26
Figure 1-18 Scene Graph for HelloJava3DC EXAMPIEcc.ooiiiiiiiiieieeeeeeee e 1-30
Figure 1-19 An Image of the ColorCube in Rotation as Rendered by HelloJava3Dc.............cccoevveinene 1-30
Figure 1-20 Scene Graph for HelloJava3Dd EXampPIe..........coviiiiiiiiiiiiieeee e 1-32
Figure 1-21 An Image of the ColorCube in Rotation as Rendered by HelloJava3Dd...............ccceeuee.e. 1-32

The Java 3D Tutorial 1-ii

Getting Started with Java 3D

Code Fragments

Code Fragment 1-1 Class HEOJAVABDA.cceiueieiieeeiee ettt e e snee e saee e sneeeenneeeens 1-14
Code Fragment 1-2 Method createSceneGraph for Class HelloJava3Da...........ccccvevveiieeiecnecnciecsieene 1-14
Code Fragment 1-3 Main() Method of HelloJava3Da Invokes MainFrame...........cccocevveeieenecniiecieenn 1-15
Code Fragment 1-4 Import Statements for HelloJavaBDajaVaL..........ceeieereeriieenienee e 1-15
Code Fragment 1-5 One Rotation in the Content Branch Graph.............ccoveeeeiiieien e 1-20
Code Fragment 1-6 Two Rotation Transformationsin HelloJava3DD.............ccovveiiiiiieiiciiccecee 1-21
Code Fragment 1-7 createSceneGraph method with Rotationl nterpolator Behaviorcccoovceeeieeen. 1-29
Code Fragment 1-8 Content Branch for Rotated Spinning ColorCube of HelloJava3Dd........................ 1-31

The Java 3D Tutorial 1-iii

Getting Started with Java 3D

Reference Blocks

SIMPIEUNIVEISE CONSITUCTOIS ...ttt ettt sttt ss et be e e s e s e sae e e sn e e neenneenn e e ne e e 1-11
ViewingPlatform set Nomi nal Vi ewi ngTransform() Mehod.........cccovoiiiiiiiiiei i, 1-12
SimpleUniverse Methods (Partial [1St)cooeerieiiiieeee e 1-12
BranchGroup conpi | () MEthOG...........c.ooi e 1-13
SceneGraphObject Methods (Partial TiSt)c.eeieerieiieee e 1-13
MainFrame Constructor (Partial liSt)ceeeiee i 1-15
BranchGroup Default CONSITUCTONcii e st e e st eeneeeenees 1-17
CANVES3D CONSITUCTONeeieeee et ssree et e st sre e s e e e e e sre e e snr e e s anneesane e e snneesnneesane e e nnneesnnneenns 1-17
Transform3D Default CONSIIUCTONuiiiieiieerieeieesiee ettt sn e saneeas 1-17
Transform3D Methods (Partial TiSE)eeeeeee e e e 1-18
TransformMGrOUP CONSIIUCLOISceeiueeeeitieeiieeesieeeeieeesteeeseeeeseeeesnteeesaeeesneeesnteeesneeesaneeesnseeeanseesnneens 1-18
TransformGroup set Tr ansf or M) Method...........cooooiiiii e 1-18
V ECLOIr3f CONSITUCTOIS. ...t ettt ettt ettt s e e bt e s be e s et e b e e eheenan e e neesnnennneennnennneen 1-19
COlOrCUDE CONSIMUCLONS. ...ttt ettt s e sse e st b e s s e san e e s e e nae e e e e e neennnennne e neennes 1-19
SceneGraphObject Methods (Partial TiSt)c.eeoeerieeieee e 1-24
TransformGroup Capabilities (Partial liSt)cooouee i e 1-24
Group Capabilities (Partial TSL)oe et e et e e e e sneeeenneeeens 1-25
Rotationlnterpolator Constructor (Partial 1iSt)oeeeiceeeiee e 1-26
N Fo = W O] L o o S 1-27
Behavior setSchedulingBoundS MEINOG............c.eoiiiiiiiee e 1-28
Bounding Sphere Constructors (Partial list)coooeee e 1-28

Preface to Chapter 1

This document isthe first part of atutorial on using the Java 3D API. Additional chapters and the full

preface to this material is presented in the Module O document available at:
http://java. sun. con products/javamedi a/ 3d/ col | at eral

The Java 3D Tutorial 1-iv

Getting Started with Java 3D Chapter 1. Getting Started

CHAPTER 1
Getting Started

0001

100
T(dx, dy, dz) = géggz

Chapter Objectives
After reading this chapter, you will:
Be able to explain in general terms what Java 3D is
Be able to describe the basic structure of Java 3D programs
Recognize many classes from the Java 3D API
Be able to write some simple animated Java 3D programs

The Java 3D API is an interface for writing programs to display and interact with three-dimensional
graphics. Java 3D is a standard extension to the Java 2 JDK. The API provides a collection of high-level
constructs for creating and manipulating 3D geometry and structures for rendering that geometry. Java 3D
provides the functions for creation of imagery, visualizations, animations, and interactive 3D graphics
application programs.

1.1 What isthe Java 3D API?

The Java 3D API is a hierarchy of Java classes which serve as the interface to a sophisticated three-
dimensional graphics rendering and sound rendering system. The programmer works with high-level
congtructs for creating and manipulating 3D geometric objects. These geometric objects reside in a virtua
universe, which is then rendered. The AP is designed with the flexibility to create precise virtual universes
of awide variety of sizes, from astronomical to subatomic.

Despite al this functionality, the API is still straightforward to use. The details of rendering are handled
automatically. By taking advantage of Java threads, the Java 3D renderer is capable of rendering in
parallel. Therenderer can also automatically optimize for improved rendering performance.

A Java 3D program creates instances of Java 3D objects and places them into a scene graph data structure.
The scene graph is an arrangement of 3D objects in a tree structure that completely specifies the content of
avirtual universe, and how it is to be rendered.

The Java 3D Tutoria 1-1

Getting Started with Java 3D Chapter 1. Getting Started

Java 3D programs can be written to run as stand alone applications, as applets in browsers which have
been extended to support Java 3D, or both.

1.2 TheJava 3D API

Every Java 3D program is at least partially assembled from objects from the Java 3D class hierarchy. This
collection of objects describes a virtual universe, which is to be rendered. The APl defines over 100
classes presented in the j avax. nmedi a. j 3d package. These classes are commonly referred to as the
Java 3D core classes.

There are hundreds of fields and methods in the classes of the Java 3D API. However, a smple virtua
universe that includes animation can be built with only afew classes. This chapter describes a minimal set
of objects and their interactions to render a simple virtua universe.

This chapter includes the development of one simple but complete Java 3D program called HelloJava3D,
which displays a rotating cube. The example program is developed incrementally, and presented in
multiple versions, to demonstrate each part of the Java 3D programming process. All of the programs used
in this tutorial are available electronically. See the "Getting This Tutorial" section in the Preface for more
information.

In addition to the Java 3D core package, other packages are used in writing Java 3D programs. One such
package is the com sun. j 3d. uti | s package that is commonly referred to as the Java 3D utility
classes. The core class package includes only the lowest-level classes necessary in Java 3D programming.
The utility classes are convenient and powerful additions to the core.

The utility classes fall into four major categories: content loaders, scene graph construction aids, geometry
classes, and convenience utilities. Future functionality, such as nurbs, likely would be added as utility
classes, not in the Java 3D core package. Some utility classes may be moved to the core package in future
versions of the Java 3D API.

Using utility classes significantly reduces the number of lines of code in a Java 3D program. In addition to
the Java 3D core and utility class packages, every Java 3D program uses classes from the j ava. awt

package and j avax. vecmat h package. The j ava. awt package defines the Abstract Windowing
Toolkit (AWT). AWT classes create a window to display the rendering. Thej avax. vecmat h package
defines vector math classes for points, vectors, matrices, and other mathematical objects.

In therest of the text, the term visual object is used to refer to an * object in the scene graph’ (e.g., acube or
asphere). Theterm object is used only to refer to an instance of a class. The term content is used to refer
to visual objects in a scene graph as awhole.

1.3 Building a Scene Graph

A Java 3D virtua universeis created from a scene graph. A scene graph is created using instances of Java
3D classes. The scene graph is assembled from objects to define the geometry, sound, lights, location,
orientation, and appearance of visual and audio objects.

! Browser support for Java 3D is available through the Java Plugin, which can be downloaded from java.sun.com.
All of the example programs in this tutorial are written as applications.

The Java 3D Tutorial 1-2

Getting Started with Java 3D Chapter 1. Getting Started

A common definition of a graph is a data structure composed of nodes and arcs. A node is a data element,
and arc is a relationship between data elements. The nodes in the scene graph are the instances of Java 3D
classes. The arcs represent the two kinds of relationships between the Java 3D instances.

The most common relationship is a parent-child relationship. A group node can have any number of
children but only one parent. A leaf node can have one parent and no children. The other relationship is a
reference. A reference associates a NodeComponent object with a scene graph Node. NodeComponent
objects define the geometry and appearance attributes used to render the visual objects.

A Java 3D scene graphs is constructed of Node objects in parent-child relationships forming a tree
structure. In atree structure, one node is the root. Other nodes are accessible following arcs from the root.
The arcs of a tree form no cycles. A scene graph is formed from the trees rooted at the Locale objects.
The NodeComponents and reference arcs are not part of the scene graph tree.

Only one path exists from the root of atree to each of the leaves; therefore, there is only one path from the
root of a scene graph to each leaf node. The path from the root of a scene graph to a specific leaf node is
the leaf node's scene graph path. Since a scene graph path leads to exactly one leaf, there is one scene
graph path for each leaf in the scene graph.

Each scene graph path in a Java 3D scene graph completely specifies the state information of its leaf. State
information includes the location, orientation, and size of a visua object. Consequently, the visua
attributes of each visual object depend only on its scene graph path. The Java 3D renderer takes advantage
of this fact and renders the leaves in the order it determines to be most efficient. The Java 3D programmer
normally does not have control over the rendering order of objects”.

Graphic representations of a scene graph can serve as design tool and/or documentation for Java 3D
programs. Scene graphs are drawn using standard graphic symbols as shown in Figure 1-1. Java 3D
programs may have many more objects than those of the scene graph.

To design a Java 3D virtua universe a scene graph is drawn using the standard set of symbols. After the
design is complete, that scene graph drawing is the specification for the program. After the program is
complete, the same scene graph is a concise representation of the program (assuming the specification was
followed). A scene graph drawn from an existing program documents the scene graph the program creates.

2 The only control a Java 3D programmer has over the rendering order is with the OrderedGroup class node. This
classis not covered in thistutorial. See The Java 3D API Specification for details.

The Java 3D Tutorial 1-3

Getting Started with Java 3D Chapter 1. Getting Started

Nodes and NodeComponents (objects) Arcs (object relationships)

,////l VinualUniverse > parent-child link
<> ose > reference
Q Group

L eaf

Q NodeComponent

other objects

Figure 1-1 Symbols Representing Objectsin Scene Graphs

Each of the symbols shown on the left-hand side of Figure 1-1 represents a single object when used in a
scene graph. The first two symbols represent objects of specific classes: VirtualUniverse and Locale. The
next three symbols on the left represent objects of the Group, Leaf, and NodeComponent classes. These
three symbols are often annotated to indicate the subclass of the specific object. The last symbol on the left
is used to represent any other class of object.

The solid arrow symbol represents a parent-child relationship between two objects. The dashed arrow is a
reference to another object. Referenced objects can be shared among different branches of a scene graph.
An example of a simple scene graph is shown in Figure 1-2.

The Java 3D Tutorial 1-4

Getting Started with Java 3D Chapter 1. Getting Started

VirtualUniverse

Locae

Shape3D node s _
7 ™
N —
View [g7 P! Canves3D [P Screen3D

View Platform . N
Node Components > |

Physical Body Physical Environment

Figure 1-2 First Scene Graph Example

It is possible to create an illegal scene graph. An exampleillega scene graph is shown in Figure 1-3. The
scene graph depicted in Figure 1-3 isillegal because it violates the properties for aDAG. The problem lies
only with the two TransformGroup objects having the same Shape3D leaf object as children. Remember a
Leaf object may have only one parent. In other words, there can only be one path from a Locale object to a
leaf (or one path from aleaf to aLocale).

You may think the structure shown in Figure 1-3 defines three visua objects in a virtual universe. It
appears as though the scene graph defines two visual objects through re-use of the visual (Shape3D) object
on the right-hand side of the figure. Conceptually, each of the TransformGroup objects parenting the
shared instance of Shape3D could place an image of the visual object in different locations. However, it is
an illegal scene graph since the parent-child arcs do not form atree. In this example, the result is that the
Shape3D object has more than one parent.

The discussion of the tree and DAG structures are correct. However, the Java 3D runtime system reports
the mistake in terms of child-parent relationships. One result of the tree structure limitation is that each
Shape3D object is restricted to one parent. For the example scene graph of Figure 1-3, a 'multiple parent’
exception is reported at runtime. Figure 1-4, with one parent for each Shape3D object, shows one possible
fix for this scene graph.

The Java 3D Tutorial 1-5

Getting Started with Java 3D Chapter 1. Getting Started

Figure 1-3 Example of an Illegal Scene Graph

A Java 3D program that defines an illegal scene graph may compile, but not render. When a Java 3D
program that defines an illegal scene graph is run, the Java 3D system detects the problem. When the
problem is detected, the Java 3D system will report an exception. The program may still be running and
consequently, needs to be stopped. However, no image will be rendered.

Figure 1-4 One Possible Fix for Illegal Scene Graph of Figure 1-3

The Java 3D Tutorial 1-6

Getting Started with Java 3D Chapter 1. Getting Started

Each scene graph has a single VirtuaUniverse. The VirtuaUniverse object has alist of Locale objects. A
Locale object provides a reference point in the virtual universe. Think of a Locae object as being a
landmark used to determine the location of visua objects in the virtual universe.

It is technically possible for a Java 3D program to have more than one VirtualUniverse object, thus
defining more than one virtual universe. However, there is no inherent way to communicate among virtual
universes. Further, a scene graph object can not exist in multiple virtual universes simultaneoudly. It is
highly recommended to use one and only one instance of VirtualUniverse in each Java 3D program.

While a Virtual Universe object may reference many Locale abjects, most Java 3D programs have only one
Locale abject. Each Locale object may serve as the root of multiple subgraphs of the scene graph. Refer
to Figure 1-2 for an example scene graph and note the two subgraph branches from the Locale object in the
figure.

A BranchGroup object is the root of a subgraph, or branch graph. There are two different categories of
scene subgraph: the view branch graph and the content branch graph. The content branch graph specifies
the contents of the virtual universe - geometry, appearance, behavior, location, sound, and lights. The view
branch graph specifies the viewing parameters such as the viewing location and direction. Together, the
two branches specify much of the work the renderer has to do.

1.3.1 High Level Java 3D API Class Hierarchy

An overview of the first three levels of the Java 3D APl hierarchy appears in Figure 1-5. The
VirtualUniverse, Locae, Group, and Leaf classes appear in this portion of the hierarchy. Other than the
VirtualUniverse and Locale objects, the rest of a scene graph is composed of SceneGraphObject objects.
SceneGraphObject is the superclass for nearly every Core and Utility Java 3D class.

SceneGraphObject has two subclasses: Node and NodeComponent. The subclasses of Node provide most
of the objects in the scene graph. A Node object is either a Group node or a Leaf node object. Group and
Leaf are superclasses to a number of subclasses. Hereisaquick look at the Node class, its two subclasses,
and the NodeComponent class. After this background materia is covered, the construction of Java 3D
programs is explained.

Node Class

The Node class is an abstract superclass of Group and Leaf classes. The Node class defines some
important common methods for its subclasses. Information on specific methods is presented in later
sections after more background materia is covered. The subclasses of Node compose scene graphs.

Group Class

The Group class is the superclass used in specifying the location and orientation of visua objects in the
virtua universe. Two of the subclasses of Group are BranchGroup and TransformGroup. In the graphical
representation of the scene graph, the Group symbols (circles) are often annotated with BG for
BranchGroups, TG for TransformGroups, etc. Figure 1-2 shows an example of this.

Leaf Class

The Leaf class is the superclass used in specifying the shape, sound, and behavior of visual objectsin the
virtual universe. Some of the subclasses of Leaf are Shape3D, Light, Behavior, and Sound. These objects
can have no children but may reference NodeComponents.

The Java 3D Tutorial 1-7

Getting Started with Java 3D Chapter 1. Getting Started

NodeComponent Class

The NodeComponent class is the superclass used in specifying the geometry, appearance, texture, and
material properties of a Shape3D (Leaf) node. NodeComponents are not part of the scene graph, but are
referenced by it. A NodeComponent may be referenced by more than one Shape3D object.

j avax. nmedi a. j 3d

VirtualUniverse

— | Locale

View

— | PhysicaBody

PhysicalUniverse

— | Screen3D

— | Canvas3D (extends awt.canvas)

ScreenGraphObject

Node

Group

L eaf

NodeComponent

— | Transform3D

Alpha

Figure 1-5 An Overview of the Java 3D API Class Hierarchy

1.4 Recipe for Writing Java 3D Programs

The subclasses of SceneGraphObject are the building blocks that are assembled into scene graphs. The
basic outline of Java 3D program development consists of seven steps (collectively referred to as a recipe
here and in The Java 3D API Specification) presented in Figure 1-6. This recipe can be used to assemble
many useful Java 3D programs.

The Java 3D Tutorial 1-8

Getting Started with Java 3D Chapter 1. Getting Started

Create a Canvas3D abject

Create a VirtualUniverse object

Create aLocale object, attaching it to the Virtual Universe object

Construct a view branch graph

a. Create aView object

b. Create aViewPlatform object

c. Create aPhysicaBody object

d. Create aPhysicalEnvironment object

e. Attach ViewPlatform, PhysicalBody, PhysicaEnvironment, and Canvas3D objects to View
object

5. Construct content branch graph(s)

6. Compile branch graph(s)

7. Insert subgraphsinto the Locale

PR

Figure 1-6 Recipefor Writing Java 3D Programs

This recipe ignores some detail but illustrates the fundamental concept of al Java 3D programming:
creating each branch graph of the scene graph is the majority of the programming. Rather than expand on
this recipe, the next section explains an easier way to construct a very similar scene graph with less
programming.

1.4.1 A Simple Recipefor Writing Java 3D Programs

Java 3D programs written using the basic recipe have view branch graphs with identical structure. The
regularity of view branch graph structure is also found in the SimpleUniverse Utility class. Instances of
SimpleUniverse perform steps 2, 3, and 4 from the basic recipe. Using the SmpleUniverse class in Java
3D programming significantly reduces the time and effort needed to create the view branch graph.
Consequently, the programmer has more time to concentrate on the content. Thisis what writing a Java 3D
program is really about.

The SimpleUniverse is agood starting point for Java 3D programming because it alows the programmer to
ignore the view branch graph. However, using the SimpleUniverse does not allow having multiple views of
the virtual universe.

The SimpleUniverse classis used in all the programming examplesin this tutorial. Programmers who need
more information on View, ViewPlatform, PhysicalBody, and Physica Environment classes are referred to
other references. See Appendix B for alist of references.

SimpleUniverse Class

The SimpleUniverse object constructor creates a scene graph including VirtualUniverse and Locale objects,
and a complete view branch graph. The view branch graph created by SimpleUniverse uses instances of
ViewingPlatform and Viewer convenience classes in place of the core classes used to create the view
branch graph. Note the SimpleUniverse only indirectly uses the View and ViewPlatform objects of the
Java 3D core. The SimpleUniverse object supplies the functionality of all of the objects inside the large
box in Figure 1-7.

The com sun. j 3d. util s. uni ver se package contains the SmpleUniverse, ViewingPlatform, and
Viewer convenience utility classes.

The Java 3D Tutorial 1-9

Getting Started with Java 3D Chapter 1. Getting Started

VirtualUniverse \

Locde \

P A \ @ TransformGroup \
. ‘
A p View [P Cawas3D [T P Screen3D

\ View Platform N
| 2 4 \
Physical Body Physical Environment \

L .

Figure 1-7 A SmpleUniverse Object Provides a Minimal Virtual Universe, Indicated by the Dashed
Line.

Using a SimpleUniverse object makes the basic recipe even easier. Figure 1-8 presents the smple recipe,
which is the basic recipe modified to use a SimpleUniverse object. Steps 2, 3, and 4 of the basic recipe are
replaced by step 2 of the smple recipe.

1. Create a Canvas3D Object

2. Create a SimpleUniverse object which references the earlier Canvas3D object
a. Customize the SimpleUniverse object

3. Construct content branch

4. Compile content branch graph

5. Insert content branch graph into the Locale of the SimpleUniverse

Figure 1-8 Smple Recipe for Writing Java 3D Programs using SmpleUniverse.

The gray box on the next page is the first instance of a reference block in this tutorial. A reference block
lists constructors, methods, or fields of a class. Reference blocks are designed to allow the tutoria reader
to learn basic Java 3D APl programming without having another reference at hand. The reference blocks
in this tutorial do not cover every constructor or method of a class. For that matter, there are many Java
3D API classes without reference block in this tutorial. Therefore, this tutorial document does not replace
The Java 3D APl Specification. However, for the constructors, methods, or fields listed; the reference
blocks in this tutorial typically give more detailed information than The Java 3D APl Specification.

The Java 3D Tutorial 1-10

Getting Started with Java 3D Chapter 1. Getting Started

SimpleUniver se Constructors
Package: com sun. j 3d. uti |l s. uni verse

This class sets up aminimal user environment to quickly and easily get a Java 3D program up and running.
This utility class creates al the necessary objects for a view branch graph. Specifically, this class creates
Locae, VirtuaUniverse, ViewingPlatform, and Viewer objects (all with their default values). The objects
have the appropriate relationships to form the view branch graph.

SimpleUniverse provides all functionality necessary for many basic Java 3D applications. Viewer and
ViewingPlatform are convenience utility classes. These classes use the View and ViewPlatform core
classes.

Si npl eUni ver se()
Constructs a simple virtual universe.

Si npl eUni ver se(Canvas3D canvas3D)
Construct as simple universe with a reference to the named Canvas3D object.

The SimpleUniverse object creates a complete view branch graph for a virtual universe. The view branch
graph includes an image plate. Animage plate isthe conceptua rectangle where the content is projected to
form the rendered image. The Canvas3D abject, which provides an image in a window on your computer
display, can be thought of asthe image plate.

Figure 1-9, shows the relationship between the image plate, the eye position, and the virtual universe. The
eye position is behind the image plate. The visual abjects in front of the image plate are rendered to the
image plate. Rendering can be thought of as projecting the visual objects to the image plate. Thisideais
illustrated with the four projectors in the image (dashed lines).

Froj ectors

A s

object

eye position Z image plate

Figure 1-9 Conceptual Drawing of Image Plate and Eye Position in a Virtual Universe.

By default, the image plate is centered at the origin in the SmpleUniverse. The default orientation is to
look down the z-axis. From this position, the x-axis is a horizontal line through the image plate, with
positive values to the right. The y-axisisavertica line through the center of the image plate, with positive
values up. Consequently, the point (0,0,0) isin the center of the image plate.

The Java 3D Tutorial 1-11

Getting Started with Java 3D Chapter 1. Getting Started

The typical Java 3D program moves the view back (positive z) to make objects located at, or near, the
origin within the view. The SimpleUniverse class has a member object of ViewingPlatform class. The
ViewingPlatform class has the method setNominaViewingTransform which sets the eye postion to be
centered at (0, 0, 2.41) looking in the negative z direction toward the origin.

ViewingPlatform set Noni nal Vi ewi ngTr ansf or m() Method
Package: com sun. j 3d. uti |l s. uni verse

The ViewingPlatform class is used to set up the view branch graph of a Java 3D scene graphin a
SimpleUniverse object. This method is normally used in conjunction with the getViewingPlatform method
of the SimpleUniverse class.

voi d set Noni nal Vi ewi ngTr ansf or m()

Sets the nominal viewing distance to approximately 2.41 meters in the view transform of a SimpleUniverse.
At this viewing distance and the default field of view, objects of height and width of 2 meters generaly fit
on the image plate.

After creating Canvas3D and Simple Universe objects, the next step is the creation of the content branch
graph. The regularity of structure found in the view branch graph (that leads to using the SmpleUniverse
class) does not exist for the content branch graph. The content branch graph varies from program to
program making it impossible to give details for construction in a recipe. It also means that there is no
“simple content” class for any universe you may want to assemble.

Creating a content branch graph is the subject of Sections 1.6, 1.7, and 1.9. Compiling the content branch
graph is discussed in Section 1.8. If you cannot wait to see some code, see Code Fragment 1-1 for an
example of using the SimpleUniverse class.

After creating the content branch graph, it is inserted into the universe using the addBranchGraph method
of SimpleUniverse. The addBranchGraph method takes an instance of BranchGroup as the only parameter.
This BranchGroup is added as a child of the Locale object created by the SimpleUniverse.

SimpleUniverse M ethods (partial list)
Package: com sun. j 3d. uti |l s. uni verse
voi d addBr anchG aph(BranchG oup bg)

Used to add Nodes to the Locale object of the scene graph created by the SimpleUniverse. Thisis used to
add a content branch graph to the virtua universe.

Vi ewi ngPl at f or m get Vi ewi ngPl at f or n()
Used to retrieve the ViewingPlatform object the SimpleUniverse instantiated. This method is used with the
setNominal ViewingTransform() method of ViewingPlatform to adjust the location of the view position.

1.5 Some Java 3D Terminology

Before moving on to the topic of creating the content branch graph, two Java 3D terms are defined. The
terms live and compiled are defined in this section.

Inserting a branch graph into a Locale makes it live, and consequently, each of the objects in that branch
graph become live. There are some consegquences when an object becomes live. Live objects are subject to
being rendered. Also, the parameters of live abjects cannot be modified unless the corresponding capability
has been specifically set before the object became live. Capabilities are explained in Section 1.8.2.

The Java 3D Tutorial 1-12

Getting Started with Java 3D Chapter 1. Getting Started

BranchGroup objects can be compiled. Compiling a BranchGroup converts the BranchGroup object and
al of its ancestors to a more efficient form for the renderer. Compiling BranchGroup objects is
recommended as the last step before making it live. It is best to only compile the BranchGroup objects
inserted into Locales. Compilation is further discussed in sections 1.8 and 1.8.1.

BranchGroup conpi | e() Method

voi d conpi |l e()

Compiles the source BranchGroup associated with this object by creating and caching a compiled scene
graph.

Concepts of compiled and live are implemented in the SceneGraphObject class. The two methods of the

SceneGraphObject class that relate to these concepts are shown in the SceneGraphObject methods
reference box below.

SceneGraphObject Methods (partial list)

SceneGraphObject is the superclass of nearly every class used to create a scene graph including Group,
Leaf, and NodeComponent. The SceneGraphObject provides a number of common methods and fields for
its subclasses; two of which are presented here. The methods of SceneGraphObject associated with
“compile” are covered in Section 1.8 Performance Basics.

bool ean i sConpi | ed()
Returns a flag indicating whether the node is part of a scene graph that has been compiled.

bool ean i sLi ve()
Returns a flag indicating whether the node is part of alive scene graph.

Note there is no “start the renderer” step in either the basic or simple recipes. The Java 3D renderer starts
running in an infinite loop when a branch graph containing an instance of View becomes live in a virtual
universe. Once started, the Java 3D renderer conceptually performs the operations shown in Figure 1-10.

whil e(true) {
Process i nput
If (request to exit) break
Per f or m Behavi ors
Traverse the scene graph
and render visual objects

}

C eanup and exit

Figure 1-10 Conceptual Renderer Process

The previous sections explained the construction of a simple virtual universe without a content branch
graph. Creating the content branch graph is the subject of the next few sections. Creating content is
discussed through the presentation of example programs.

1.6 Simple Recipe Example: HelloJava3Da

The typical Java 3D program begins by defining a new class to extend the Appl et class. In the
Hel | oJava3Da.j ava example found in the exanples/HelloJava3D directory,
Hel | oJava3Da is a class defined to extend the Applet class. Java 3D programs could be written as
applications, but using Applet class gives an easy way to produce a windowed application.

The Java 3D Tutorial 1-13

Getting Started with Java 3D Chapter 1. Getting Started

The main class of a Java 3D program typically defines a method to construct the content branch graph. In
the HelloJava3Da example such a method is defined and it is called createSceneGraph().

All steps of the simple recipe are implemented in the constructor of the HelloJava3Da class. Step 1, create
a Canvas3D object, is completed on line 4. Step 2, create a SimpleUniverse object, is done on line 11.
Step 2a, customize the SimpleUniverse object, is accomplished on line 15. Step 3, construct content
branch, is accomplished by a call to the createSceneGraph() method. Step 4, compile content branch
graph, isdoneon line 8. Finally, step 5, insert content branch graph into the Locale of the SimpleUniverse,
is completed on line 16.

1. public class Hell oJava3Da extends Applet {

2 public HelloJava3Da() {

3 set Layout (new Bor der Layout ());

4. Canvas3D canvas3D = new Canvas3D(nul |');

5. add("Center", canvas3D);

6

7 BranchG oup scene = createSceneG aph();

8 scene. conpi |l e();

9.

10. /1 SinpleUniverse is a Convenience Uility class

11. Si npl eUni ver se sinpl eU = new Si npl eUni ver se(canvas3D);
12.

13. /1 This noves the ViewPl atform back a bit so the

14. /1 objects in the scene can be vi ewed.

15. si mpl eU. get Vi ewi ngPl at f orm() . set Nom nal Vi ewi ngTransform();
16.

17. si npl eU. addBr anchG aph(scene) ;

18. } // end of HelloJava3Da (constructor)

Code Fragment 1-1 Class HelloJava3Da

Step 3 of the smple recipe is to create the content branch graph. A content branch graph is created in
Code Fragment 1-2. It is probably the simplest content branch graph possible. The content branch created
in Code Fragment 1-2 contains one static graphical object, a ColorCube. The ColorCube is located at the
origin of the virtual world coordinate system. With the given location and orientation of the viewing
direction and the cube, the cube appears as a rectangle when rendered. The image is shown after al of the
code for the program is presented, in Figure 1-12.

public BranchG oup createSceneG aph() {
/1l Create the root of the branch graph
BranchG oup obj Root = new BranchG oup();

/1l Create a sinple shape | eaf node, add it to the scene graph.
/1 Col orCube is a Convenience Uility class
obj Root . addChi | d(new Col or Cube(0. 4));

CoNoURhwNE

. return obj Root;
10. } // end of createSceneG aph nmethod of Hell oJava3Da
11.} // end of class Hell oJava3Da

Code Fragment 1-2 Method createSceneGr aph for Class HelloJava3Da
The class HelloJava3Da is derived from Applet but the program is runnable as an application with the use

of the MainFrame class. The Applet class is used as a base class to make it easy to write a Java 3D
program that runs in a window. MainFrame provides an AWT frame (window) for an applet alowing the

The Java 3D Tutorial 1-14

Getting Started with Java 3D Chapter 1. Getting Started

applet to run as an application. The window size of the resulting application is specified in the construction
of the MainFrame class. Code Fragment 1-3 shows the use of MainFramein Hel | oJava3Da. j ava.

MainFrame Constructor (partial list)
package: com sun. j 3d. util s. appl et

MainFrame makes an applet into an application. A class derived from applet may have a main() method
which calls the MainFrame constructor. MainFrame extendsj ava. awt . Fr ame and implements

j ava. |l ang. Runnabl e, j ava. appl et . Appl et St ub, and

j ava. appl et . Appl et Cont ext . The MainFrame class is Copyright © 1996-1998 by Jef Poskanzer
email: jef@acme.com http://www.acme.com/javal

Mai nFrane(j ava. appl et. Appl et applet, int width, int height)
Creates a MainFrame object that runs an applet as an application.
Parameters:
applet — the constructor of a class derived from applet. MainFrame provides an AWT frame for this
applet.
width — the width of the window frame in pixels
height — the height of the window framein pixels

/1 The following allows this to be run as an application
/1 as well as an appl et

public static void main(String[] args) {
Frame frame = new Mai nFranme(new Hel | oJava3Da(), 256, 256);
} // end of main (method of Hell oJava3Da)

cohkwhE

Code Fragment 1-3 Main() Method of HelloJava3Da Invokes MainFrame

The three preceding code fragments (1-1, 1-2, and 1-3) form a complete Java 3D program when the proper
import statements are used. The following import statements are necessary to compile the class
Hel | oJava3Da. The most commonly used classes in Java 3D programming are found in the
javax. nedi a. j 3d, or j avax. vecmat h packages. In this example, only the ColorCube Utility
class is found in the com sun. j3d. utils. geonetry package. Consequently, most Java 3D
programs have the import statements shown in Code Fragment 1-4 with the exception of the import for
ColorCube.

i nport j ava. appl et. Appl et ;
i mport java. awt. Border Layout ;

i mport java. awt. Frane;

i mport java.awt.event.*;

i mport comsun.j3d.utils.appl et.MinFrane;

i mport comsun.j3d.utils.universe.*;

i mport comsun.j3d.utils.geonetry. Col or Cube;
i mport javax. nmedi a.j 3d. *;

i mport javax.vecmath. *;

CoNoURhwNE

Code Fragment 1-4 Import Statementsfor HelloJava3Da.java

In the Hel | oJava3Da. j ava example program, a single graphic object was placed in a single locae.
The resulting scene graph is shown in Figure 1-11.

The Java 3D Tutorial 1-15

Getting Started with Java 3D Chapter 1. Getting Started

VirtualUniverse

Locade

objects created by
SimpleUniverse

ColorCube

Figure 1-11 Scene Graph for HelloJava3Da Example

The four preceding code fragments (1-1, 1-2, 1-3, and 1-4) form the complete Hel | oJava3Da. j ava
example program. The complete program is found in the exanpl es/ Hel | oJava3D directory of the
distribution. Compile the code by issuing the command: j avac Hel | oJava3Da. j ava. Run the
program with the command: j ava Hel | oJava3Da. Theimage produced by HelloJava3Dais shown in
Figure 1-12.

Figure 1-12 Image Produced by HelloJava3Da

While not every line of code of the HelloJava3Da example is explained, the basic ideas of assembling a
Java 3D program should be clear having read the example. The following section fills in some of the gaps
by presenting the classes used in the program.

1.6.1 Java 3D Classes Used in HelloJava3Da

To add to the understanding of the Java 3D API and the Hel | oJava3Da example a synopsis of each of
the Java 3D API classesused in the Hel | oJava3Da example program are presented here.

The Java 3D Tutoria 1-16

Getting Started with Java 3D Chapter 1. Getting Started

BranchGroup Class

Objects of this type are used to form scene graphs. Instances of BranchGroup are the root of subgraphs.
BranchGroup objects are the only objects alowed to be children of Locale objects. BranchGroup objects
can have multiple children. The children of a BranchGroup object can be other Group or Leaf objects.

BranchGroup Default Constructor

BranchG oup()
Instances of BranchGroup serve as roots of scene graph branches; BranchGroup objects are the only
objects that can be inserted into a Locale's set of objects.

Canvas3D Class

The Canvas3D classis derived from the Canvas class of the Abstract Windowing Toolkit (AWT). At least
one Canvas3D object must be referenced in the viewing branch graph of the scene graph®. For more
information on the Canvas class, consult areference on the AWT. A list of references appears in Appendix
B.

Canvas3D Constructor

Canvas3D(G- aphi csConfi gurati on graphi csconfi guration)

Constructs and initializes a new Canvas3D object that Java 3D can render given avalid
GraphicsConfiguration object. It isan extension of the AWT Canvas class. For more information on the
GraphicsConfiguration object see the Java 2D specification, which is part of the AWT in JDK 1.2.

Transform3D Class

Transform3D objects represent transformations of 3D geometry such as trandation and rotation. These
objects are typically only used in the creation of a TransformGroup object. First, the Transform3D object
is congtructed, possibly from a combination of Transform3D objects. Then the TransformGroup object is
constructed using the Transform3D object.

Transform3D Default Constructor

A generalized transform object is represented internally as a 4x4 double precision floating-point matrix.
The mathematical representation isrow major. A Transform3D object is not used in a scene graph. It is
used to specify the transformation of a TransformGroup object.

Transf or nBD()
Constructs a Transform3D object that represents the identity matrix (no transformation).

A Transform3D object can represent trandation, rotation, scaling, or a combination of these. When
specifying a rotation, the angle is expressed in radians. One full rotation is 2 Pl radians. One way to
specify angles is to use the constant Mat h. Pl . Another way is to specify values directly. Some
approximations are: 45 degreesis 0.785, 90 degreesis 1.57, and 180 degreesis 3.14.

% It is possible to have more than one. To keep things simple, using the SimpleUniverse, there will be only one
instance of Canvas3D in the programs presented.

The Java 3D Tutorial 1-17

Getting Started with Java 3D Chapter 1. Getting Started

Transform3D Methods (partial list)

Transform3D objects represent geometric transformations such as rotation, trandation, and scaling.
Transform3D is one of the few classes not directly used in any scene graph. The transformations
represented by a Transform3D object are used to create TransformGroup objects that are used in scene

graphs.

voi d rot X(doubl e angl e)
Sets the value of this transform to a counter clockwise rotation about the x-axis. The angleis specified in
radians.

voi d rot Y(doubl e angl e)
Sets the value of this transform to a counter clockwise rotation about the y-axis. The angleis specified in
radians.

voi d rot Z(doubl e angl e)
Sets the value of this transform to a counter clockwise rotation about the z-axis. The angle is specified in
radians.

voi d set (Vector3f translate)
Sets the trandational value of this matrix to the Vector3f parameter values, and sets the other components
of the matrix as if this transform were an identity matrix.

TransformGroup Class

As a subclass of the Group class, instances of TransformGroup are used in the creation of scene graphs
and have a collection of child node objects. TransformGroup objects hold geometric transformations such
as trandation and rotation. The transformation is typically created in a Transform3D aobject, which is not a
scene graph object.

TransformGroup Constructors
TransformGroup objects are holders of transformations in the scene graph.

Tr ansf or m& oup()
Constructs and initializes a TransformGroup using an identity transform.

Tr ansf or m& oup(Tr ansf or n8D t 1)
Constructs and initializes a TransformGroup from the Transform3D object passed.
Parameters:

t1 - the transform3D object

The transform held in a Transform3D aobject is copied to a TransformGroup object either when the
TransformGroup object is created, or by using the setTransform() method.

TransformGroup set Tr ansf or n{) Method
voi d set Tr ansf or n{ Tr ansf orn8D t 1)
Sets the transform component of this TransformGroup to the value of the passed transform.

Parameters:
t1 - the transform to be copied.

The Java 3D Tutorial 1-18

Getting Started with Java 3D Chapter 1. Getting Started

Vector 3f Class

Vector3f is a math class found in the j avax. vecmat h package for specifying a vector using three
floating-point values. Vector objects are often used to specify trandations of geometry. Vector3f objects
are not used directly in the construction of a scene graph. They are used to specify trandation, surface
normals, or other things.

Vector 3f Constructors
A 3-element vector that is represented by single precision floating point X, y, and z coordinates.

Vect or 3f ()
Constructs and initializes a Vector3f to (0,0,0).

Vector3f (float x, float y, float z)
Constructs and initializes a Vector3f from the specified x, y, z coordinates.

ColorCube

ColorCube is a utility class found in thecom sun. j 3d. uti | s. geonet ry package that defines the
geometry and colors of a cube centered at the origin with different colors on each face. The default
ColorCube object isin a cube that is 2 meters high, wide and deep. If a non-rotated cube is placed at the
origin (as in HelloJava3Da), the red face will be visua from the nominal viewing location. Other colors are
blue, magenta, yellow, green, and cyan.

ColorCube Constructors
Package: com sun. j 3d. util s. geonetry

A ColorCube is a simple color-per-vertex cube visua object with a different color for each face.
ColorCube extends the Shape3D class; therefore, it isaLeaf node. ColorCube is easy to use when putting
together a virtual universe.

Col or Cube()
Constructs a color cube of default size. By default, a corner islocated 1 meter along each of the axis from
the origin, resulting in a cube that is centered at the origin and is 2 meters high, wide and deep.

Col or Cube(doubl e scal e)
Constructs a color cube scaled by the value specified. The default sizeis 2 meters on an edge. The
resulting ColorCube has corners at (scale, scale, scale) and (-scale, -scale, -scale).

1.7 Rotating the Cube

A simple rotation of the cube can be made to show more than one face of the cube. The first step is to
create the desired transformation using a Transform3D object.

The Code Fragment 1-5 incorporates a TransformGroup object in the scene graph to rotate the cube about
the x-axis. The rotation transformation is first created using the Transform3D object rotate. The
Transform3D object is created on line 6. The rotation is specified using the rotX () method on line 8. The
TransformGroup object is then created holding the rotation transform on line 10.

Two parameters specify the rotation: the axis of revolution, and the angle of rotation. The axis is chosen
by sdlecting the proper method. The angle of rotation is the value that is the argument to the method.
Since the angle of rotation is specified in radians, the value P/4 is 1/8 of a full rotation, or 45 degrees.

The Java 3D Tutorial 1-19

Getting Started with Java 3D Chapter 1. Getting Started

After creating the Transform3D object, rotate, it is used in the creation of a TransformGroup object
objRotate (line 10). The Transform3D object is used in the scene graph. The objRotate object then makes
the ColorCube object its child (line 11). In turn, the objRoot object makes objRotate its child (line 12).

The Transform3D methods rotX(), rotY, and rotZ() are listed in areference block in the previous section.

1. public BranchG oup createSceneG aph() {

2. /1l Create the root of the branch graph

3. BranchG oup obj Root = new BranchG oup();

4.

5. /1 rotate object has conposite transformation matrix
6. TransfornBD rotate = new TransfornBD();

7.

8. rotate.rot X(Math. P/ 4.0d);

9.

10. Transf or mM& oup obj Rotate = new TransfornG oup(rotate);
11. obj Rot at e. addChi | d(new Col or Cube(0. 4));

12. obj Root . addChi | d(obj Rot ate) ;

13. return obj Root;

14. } // end of createSceneG aph net hod

Code Fragment 1-5 One Rotation in the Content Branch Graph

The content branch graph now includes a TransformGroup abject in the scene graph path to the ColorCube
object. Each of the aobjects in the scene graph path is necessary. The BranchGroup object is the only
object that can be a child of a Locale. The TransformGroup object is the only abject that can change the
location, orientation, or size of a visua object. In this case, the TransformGroup object changes the
orientation. Of course, the ColorCube object is necessary to supply the visual object.

The content branch graph produced by Code Fragment 1-5 is shown in Figure 1-13.

&9
19

ColorCube

Figure 1-13 Scene Graph for Content Branch Graph Created in Code Fragment 1-5

Code Fragment 1-5 is not used in a program in the example subdirectory. It isonly presented as a stepping
stone to bigger and more interesting programs. The bigger problem, presented next, is combining two
transformations in one TransformGroup object.

1.7.1 Combination of Transformations Example: HelloJava3Db

Quite often avisua object is trandated and rotated, or rotated about two axes. In either case, two different
transformations are specified for a single visua object. The two transformations can be combined into one

The Java 3D Tutorial 1-20

Getting Started with Java 3D Chapter 1. Getting Started

transformation matrix and held by a single TransformGroup object. An example of this is shown in Code
Fragment 1-6.

Two rotations are combined in the example program Hel | oJava3Db. Making two simultaneous
rotations requires combining two rotation Transform3D objects. The example rotates the cube around both
the x and y-axes. Two Transform3D objects, one for each rotation, are created (lines 6 and 7). The
individual rotations are specified for the two TransformGroup objects (lines 9 and 10). Then the rotations
are combined by multiplying the Transform3D objects (line 11). The combination of the two transformsis
then loaded into the TransformGroup object (line 12).

1. public BranchG oup createSceneG aph() {

2. /1l Create the root of the branch graph

3. BranchG oup obj Root = new BranchG oup();

4.

5. /1 rotate object has conposite transformation matrix
6. TransfornBD rotate = new TransfornBD();

7. TransfornBD t enpRot ate = new Tr ansf ornBD() ;

8.

9. rotate.rot X(Math. Pl /4.0d);

10. tenpRot ate. rot Y(Mat h. PI /5. 0d) ;

11. rotate. nul (tenpRot at e) ;

12. Transf or mM& oup obj Rotate = new TransfornmG oup(rotate);
13.

14. obj Rot at e. addChi | d(new Col or Cube(0. 4));

15. obj Root . addChi | d(obj Rot ate) ;

16. return obj Root;

Code Fragment 1-6 Two Rotation Transformationsin HelloJava3Db

Either Code Fragment 1-5 or Code Fragment 1-6 could replace Code Fragment 1-2 in HelloJava3Da to
create a new program. Code Fragment 1-6 isused in Hel | oJava3Db. j ava. The complete example
program, with the combined rotations, appears in exanpl es/ Hel |l oJava3D/ in file
Hel | oJava3Db. j ava. Thisprogram isrun as an application as HelloJava3Da was.

The scene graph created in Hel | oJava3Db. j ava is shown in Figure 1-14. The view branch graph is
the same one produced in HelloJava3Da, which is constructed by SimpleUniverse and represented by the
large star. The content branch graph now includes a TransformGroup in the scene graph path to the
ColorCube object.

The Java 3D Tutorial 1-21

Getting Started with Java 3D Chapter 1. Getting Started

ColorCube

Figure 1-14 Scene Graph for HelloJava3Db Example

The image in Figure 1-15 shows the rotated ColorCube from HelloJava3Db.

f=3HelloJava3Db

Figure 1-15 Image of the Rotated Color Cube Rendered by HelloJava3Db

1.8 Capabilities and Performance

The scene graph constructed by a Java 3D program could be used directly for rendering. However, the
representation is not very efficient. The flexibility built in to each scene graph object (which has not been
discussed in this tutorial) makes it a sub-optimal representation of the virtua universe. A more efficient
representation of the virtual universe is used to improve rendering performance.

The Java 3D Tutoria 1-22

Getting Started with Java 3D Chapter 1. Getting Started

Java 3D has an interna representation for a virtual universe and methods for making the conversion. There
are two ways to have the Java 3D system make the conversion to the internal representation. One way isto
compile each branch graph. The other way is to insert the branch graph into a virtual universe to make it
live. Compiling a branch graph is the subject of the next section. The effects of the conversion to the
internal representation are discussed in Section 1.8.2.

1.8.1 Compiling Contents

The BranchGroup object has a compile method. Invoking this method converts the entire branch graph
below the branch group to the Java 3D internal representation of the branch graph. In addition to the
conversion, the internal representation may be optimized in one or more ways.

The possible optimizations are not specified by the Java 3D API. However, efficiencies can be gained in a
number of ways. One of the possible optimizations is to combine TransformGroups along scene graph
paths. For example, if a scene graph has two TransformGroup objects in a parent-child relationship they
can be represented by one TransformGroup object. Another possibility is to combine Shape3D objects
which have a static physical relationship. These types of optimizations are made possible when the
capabilities are not set. Other optimizations are possible as well.

Figure 1-16 presents a conceptual representation of the conversion to a more efficient representation. The
scene graph on the left-hand side of the Figure is compiled and transformed into the internal representation
shown on the right-hand side of the Figure. The Figure only represents the concept of the interna
representation, not how Java 3D actually performs.

iew branch
graph

compile

ColorCube

ColorCube

Figure 1-16 Conceptual Example of the Result of Compiling a Scene Graph

The Java 3D Tutorial 1-23

Getting Started with Java 3D Chapter 1. Getting Started

1.8.2 Capabilities

Once a branch graph is made live or compiled the Java 3D rendering system converts the branch graph to a
more efficient internal representation. The most important effect of converting the scene graph to the
internal representation is to improve rendering performance.

Making the transformation to the internal representation has other effects as well. One effect is to fix the
value of transformations and other objects in the scene graph. Unless specifically provided for in the
program, the program no longer has the capability to change the values of the scene graph objects after
they arelive.

There are cases when a program still needs the capability to change values in a scene graph object after it
becomes live. For example, changing the value of a TransformGroup object creates animations. For this
to happen, the transform must be able to change after it is live. The list of parameters than can be
accessed, and in which way, is called the capabilities of the object.

Each SceneGraphObject has a set of capability bits. The values of these bits determine what capabilities
exist for the object after it is compiled or becomeslive. The set of capabilities varies by class.

SceneGraphObject Methods (partial list)

SceneGraphObject is the superclass of nearly every class used to create a scene graph including Group,
Leaf, and NodeComponent. Section 1.5 presents some other SceneGraphObject methods.

voi d cl earCapability(int bit)
Clear the specified capability bit.

bool ean get Capability(int bit)
Retrieves the specified capability bit.

voi d setCapability(int bit)
Sets the specified capability bit.

As an example, to be able to read the value of the transform represented by a TransformGroup object, that
capability must be set beforeiit is either compiled or becomeslive. Similarly, to be able to change the value
of the transform in a TransformGroup object, its transform write capability must be set before it becomes
live, or is compiled. The following reference block shows the capabilities of the non-inherited
TransformGroup class. Attempting to make a change in a live or compiled object for which the proper
capability is not set resultsin an exception.

In the next section, animations are created using a time varying rotation transformation. For this to be
possible, the TransformGroup object must have its ALLOW_TRANSFORM_WRITE capability set before
it either is compiled or becomeslive.

TransformGroup Capabilities (partial list)

The two capabilities listed here are the only ones defined by TransformGroup. TransformGroup inherits a
number of capability bits from its ancestor classes: Group and Node. Capability settings are set, reset, or
retrieved using methods defined in SceneGraphObject.

ALLOW TRANSFORM READ
Specifies the TransformGroup node alows access to the transform information of its object.

The Java 3D Tutorial 1-24

Getting Started with Java 3D Chapter 1. Getting Started

ALLOW TRANSFORM WRI TE
Specifies the TransformGroup node allows writing the transform information of its object.

Capabilities control access to other aspects of a TransformGroup object as well. TransformGroup object
inherits capability settings from its ancestor classes: Group and Node. Some of the capabilities of Group
are shown in the following reference block.

Group Capabilities (partial list)
TransformGroup inherits a number of capability bits from its ancestor classes

ALLOW CHI LDREN_EXTEND
Setting this capability allows children to be added to the Group node after it is compiled, or made live.

ALLOW CHI LDREN_READ
Setting this capability allows the references to the children of the Group node to be read after it is compiled,
or made live.

ALLOW CHI LDREN_WRI TE
Setting this capability allows the references to the children of the Group node to be written (changed) after
it is compiled, or made live.

1.9 Adding Animation Behavior

In Java 3D, Behavior is a class for specifying animations of or interaction with visual objects. The
behavior can change virtualy any attribute of a visual object. A programmer can use a number of pre-
defined behaviors or specify a custom behavior. Once a behavior is specified for a visual object, the Java
3D system updates the position, orientation, color, or other attributes, of the visual object automatically.

The distinction between animation and interaction is whether the behavior is activated in response to the
passing of time or in response to user activities, respectively.

Each visual object in the virtual universe can have its own predefined behavior. In fact, a visual object
may have multiple behaviors. To specify abehavior for avisua object, the programmer creates the objects
that specify the behavior, adds the visual object to the scene graph, and makes the appropriate references
among scene graph objects and the behavior objects.

In avirtua universe with many behaviors, a significant amount of computing power could be required just
for computing the behaviors. Since both the renderer and behaviors use the same processor(s), it is
possible the computational power requirement for behaviors could degrade rendering performance’.

Java 3D allows the programmer to manage this problem by specifying a spatial boundary for a behavior to
take place. This boundary is called a scheduling region. A behavior is not active unless the
ViewPlatform’'s activation volume intersects a Behavior object’s scheduling region. In other words, if
there is no one in the forest to see the tree falling, it does not fall. The scheduling region feature makes
Java 3D more efficient in handling a virtua universe with many behaviors.

An Interpolator is one of a number of predefined behavior classes in the core Java 3D package created
which are subclasses of Behavior. Based on a time function, the Interpolator object manipulates the

* Special graphics processors may be involved in the rendering process depending on the hardware environment
and the implementation of Java 3D. Even so, it is still possible to have too many behaviors in avirtual universe to
render quickly.

The Java 3D Tutorial 1-25

Getting Started with Java 3D Chapter 1. Getting Started

parameters of a scene graph object. For example, for the Rotationlnterpolator, manipulates the rotation
specified by a TransformGroup to affect the rotation of the visual objects which are ancestors of the
TransformGroup.

Figure 1-17 enumerates the steps involved in specifying an animation with an interpolator object. The five
steps of Figure 1-17 form arecipe for creating an interpolation animation behavior.

1. Create atarget TransformGroup
Set the ALLOW_TRANSFORM_WRITE capability
2. Create an Alpha® object
Specify the time parameters for the alpha
3. Create the interpolator object
Have it reference the Alpha and TransformGroup objects
Customize the behavior parameters
4. Specify a scheduling region
Set the scheduling region for the behavior
5. Make the behavior a child of the TransformGroup

Figure 1-17 Recipe for Adding Behaviorsto a Java 3D Visual Objects

1.9.1 Specifying Animation Behavior

A behavior action can be a change in location (Positionlnterpolator), orientation (Rotationlnterpolator),
size (Scalelnterpolator), color (Colorinterpolator), or transparency (Transparencylnterpolator) of a visual
object. As mentioned before, Interpolators are predefined behavior classes. All of the mentioned behaviors
are possible without using an interpolator; however, interpolators make creating a behavior much easier.
Interpolators classes exist to provide other actions, including combinations of these actions. The details of
these classes are presented in Section 52 and can be found in the APl specification. The
Rotationlnterpolator class is used in an example below.

Rotationlnter polator Class

This class is used to specify a rotation behavior of a visual object or a group of visual objects. A
Rotationlterpolator object changes a TransformGroup object to a specific rotation in response to the value
of an Alpha object. Since the value of an Alpha object changes over time, the rotation changes aswell. A
Rotationlnterpolator object is flexible in specification of what axis of rotation, starting angle, and ending
angle.

For smple constant rotations, the Rotationinterpolator object has the following constructor that can be
used:

Rotationlnterpolator Constructor (partial list)

This class defines a behavior that modifies the rotational component of its target TransformGroup by
linearly interpolating between a pair of specified angles (using the value generated by the specified Alpha
object). Theinterpolated angle is used to generate a rotation transform.

® Alphais aclass in Java 3D for creating time varying functions. See section 1.9.2 and/or the glossary for more
information.

The Java 3D Tutorial 1-26

Getting Started with Java 3D Chapter 1. Getting Started

Rot ati onl nt er pol at or (Al pha al pha, Transfor & oup target)
This constructor uses default values for some parameters of the interpolator to construct a full rotation
about the y-axis using the specified interpolator target TransformGroup.
parameters:
apha— the time varying function to reference.
target — the TransformGroup object to modify.

The target TransformGroup object of an interpolator must have write capability. Information on
capabilities is presented in Section 1.8.

1.9.2 Time Varying Functions. Mapping a Behavior to Time

Mapping an action to time is done using an Alpha object. The specification of the apha object can be
complex. Some basic information on the Alpha class is presented here.

Alpha Class

Alpha class objects are used to create a time varying function. The Alpha class produces a value between
zero and one, inclusive. The value it produces is dependent on the time and the parameters of the Alpha
object. Alpha objects are commonly used with an Interpolator behavior object to provide animations of
visual objects.

There are ten parameters to Alpha, giving the programmer tremendous flexibility. Without getting into the
details of each parameter, know that an instance of Alpha can easily be combined with a behavior to
provide smple rotations, pendulum swings, and one-time events such as door openings, or rocket launches.

Alpha Constructor

The apha class provides objects for converting time into an apha vaue (avaluein therange 0to 1). The
Alphaobject is effectively afunction of time that generates alpha values in the range zero to one, inclusive.
A use of the Alpha object isto provide values for Interpolator behaviors. The function f(t) and the
characteristics of the Alpha object are determined by user-definable parameters:

Al pha()
Continuous looping with a period of one second.

Al pha(int [oopCount, |ong increasingAl phabDurati on)
This constructor takes only the loopCount and increasingAlphaDuration as parameters and assigns the
default values to all of the other parameters. The resulting Alpha object produces values starting at zero
increasing to one. This repeats the number of times specified by loopCount. If loopCount is—1, the alpha
object repeats indefinitely. The time it takes to get from zero to one is specified in the second parameter
using a scale of milliseconds.
Parameters:

loopCount - number of times to run this apha object; a value of -1 specifies that the a phaloops
indefinitely.

increasingAlphaDuration - time in milliseconds during which alpha goes from zero to one

1.9.3 Scheduling Region

As mentioned in section 1.9, each behavior has scheduling bounds. The scheduling bounds for a behavior
are set using the setSchedulingBounds method of the Behavior class.

The Java 3D Tutorial 1-27

Getting Started with Java 3D Chapter 1. Getting Started

There are a number of ways to specify a scheduling region, the smplest of which is to create a
BoundingSphere object. Other options include bounding box and a bounding polytope. The
BoundingSphere class is discussed below. For information on BoundingBox and BoundingPolytope, the
reader isreferred to the APl specification.

Behavior setSchedulingBounds method

voi d set Schedul i ngBounds(Bounds r egi on)
Set the Behavior's scheduling region to the specified bounds.
Parameters:
region - the bounds that contains the Behavior's scheduling region.

BoundingSphere Class

Specifying a bounding sphere is accomplished by specifying a center point and a radius for the sphere. The
normal use of the bounding sphere is to use the center at (0, 0, 0). Theradius is then selected large enough
such that the sphere contains the visual object, including al possible locations for the object.

Bounding Sphere Constructors (partial list)
This class defines a spherica bounding region that is defined by a center point and aradius.

Boundi ngSpher e()
This constructor creates a bounding sphere centered at the origin (0, 0, 0) with aradius of 1.

Boundi ngSpher e(Poi nt 3d center, doubl e radi us)
Constructs and initializes a BoundingSphere using the specified center point and radius.

1.9.4 Behavior Example: HelloJava3Dc

Code Fragment 1-7 shows a complete example of using one of the interpolator classes to create an
animation. The animation created in this code is a continuous rotation with a total rotation time of four
seconds. Code Fragment 1-7 correlates with the interpol ation animation recipe given in Figure 1-17.

Step 1 of the recipe is to create a TransformGroup object to modify a runtime. The target
TransformGroup object of an interpolator must have write capability set. The TransformGroup object
named objSpin is created on line 7. The capability of objSpin is set on line 8 of Code Fragment 1-7.

Step 2 isto create an apha object to drive the interpolator. In the ssmple example shown in Code Fragment
1-7 the Alpha object, rotationAlpha, is used to specify a continuous rotation. The two parameters specified
on line 16 of Code Fragment 1-7 are the number of loop iterations and the time for one cycle. The value
“-1" for the loop count specifies continuous looping. The time is specified in milliseconds. The value 4000
used in the program is 4000 milliseconds which is 4 seconds. Therefore, the behavior is to rotate once
every four seconds.

Step 3 of the recipe is to create the interpolator object. The Rotationlnterpolator object rotate is created on
lines 21 and 22. The interpolator must have references to the target transform and alpha objects. Thisis
accomplished in the constructor. In this example, the RotationInterpolator’ s default behavior is used. The
default behavior of the Rotationlnterpolator isto make afull rotation about the y-axis.

Step 4 is to specify a scheduling region. In Code Fragment 1-7, a BoundingSphere object is used with its
default values. The BoundingSphere object is created on line 25. The sphere is set as the bounds for the
behavior on line 26.

The Java 3D Tutorial 1-28

Getting Started with Java 3D Chapter 1. Getting Started

Thefina step, step 5, makes the behavior a child of the TransformGroup. Thisis accomplished on line 27.

1. public BranchG oup createSceneG aph() {

2. /1l Create the root of the branch graph

3. BranchG oup obj Root = new BranchG oup();

4.

5. /!l Create the transformgroup node and initialize it to the
6. /] identity. Add it to the root of the subgraph.

7. Transf or mM& oup obj Spi n = new Transf or nG oup() ;

8. obj Spi n. set Capabi | i t y(Tr ansf or n{a oup. ALLON TRANSFORM VWRI TE) ;
9. obj Root . addChi | d(obj Spi n) ;

10.

11. /1l Create a sinple shape |eaf node, add it to the scene graph.
12. /1 Col orCube is a Convenience Uility class

13. obj Spi n. addChi | d(new Col or Cube(0. 4));

14.

15. /1 create time varying function to drive the animation

16. Al pha rotationAl pha = new Al pha(-1, 4000);

17.

18. /1l Create a new Behavior object that perforns the desired
19. /1 operation on the specified transformobject and add it into
20. /1 the scene graph.

21. Rot ati onl nterpol ator rotator =

22. new Rot ati onl nterpol at or (rotati onAl pha, obj Spin);

23.

24. /1 a boundi ng sphere specifies a region a behavior is active
25. Boundi ngSpher e bounds = new Boundi ngSphere();

26. rot at or. set Schedul i ngBounds(bounds) ;

27. obj Spi n. addChi I d(rotator);

28.

29. return obj Root;

30. } // end of createSceneG aph net hod

Code Fragment 1-7 createSceneGraph method with Rotationl nter polator Behavior

Code Fragment 1-7 is used with some previous code fragments to form the example program
Hel | oJava3Dc. Hel |l oJava3Dc.java can be found in the exanpl es/ Hel | oJava3D/
directory and can be run as an application. The running application renders the ColorCube with the
behavior of rotating once every four seconds.

The HelloJava3Dc creates the scene graph shown in Figure 1-18. The rotation object is both a child of the
TransformGroup obj Spin and has areference to it. While this relationship appears to violate the no-cycles
restriction of the scene graph, it does not. Recall that reference arcs (dashed arrows) are not part of the
scene graph. The dashed line from the Behavior to the TransformGroup is that reference.

The Java 3D Tutorial 1-29

Getting Started with Java 3D Chapter 1. Getting Started

ColorCube

Figure 1-18 Scene Graph for HelloJava3Dc Example

Theimage in Figure 1-19 shows one frame of the spinning ColorCube from HelloJava3Dc.

Figure 1-19 An Image of the Color Cube in Rotation as Rendered by HelloJava3Dc

1.9.5 Transformation and Behavior Combination Example: HelloJava3Dd

Of course, you can combine behaviors with the rotation transforms of the previous examples. In
Hel | oJava3Dd. j ava thisis done. In the content branch graph, there are objects named objRotate
and obj Spin, which distinguish between the static rotation and the continuous spin (rotation behavior) of
the cube object respectively. The code is shown in Code Fragment 1-8. The resulting scene graph isin
Figure 1-20.

The Java 3D Tutorial 1-30

Getting Started with Java 3D Chapter 1. Getting Started

public BranchG oup createSceneG aph() {
/1l Create the root of the branch graph
BranchG oup obj Root = new BranchG oup();

/1 rotate object has conposite transformation matrix
TransfornBD rotate = new TransfornBD();
TransfornBD t enpRot ate = new Tr ansf ornBD() ;

CoNoURhwNE

rotate.rot X(Math. Pl /4.0d);
10. tenpRot ate. rot Y(Mat h. PI /5. 0d) ;
11. rotate. nul (tenpRot at e) ;

12.

13. Transf or mM& oup obj Rotate = new TransfornG oup(rotate);

14.

15. /!l Create the transformgroup node and initialize it to the
16. /] identity. Enable the TRANSFORM WRI TE capability so that
17. /1 our behavior code can nodify it at runtime. Add it to the

18. /1 root of the subgraph.
19. Transf or mM& oup obj Spi n = new Transf or nG oup() ;
20. obj Spi n. set Capabi | i t y(Tr ansf or n{a oup. ALLON TRANSFORM VWRI TE) ;

22. obj Root . addChi | d(obj Rot at €) ;
23. obj Rot at e. addChi | d(obj Spi n) ;

25. /1 Create a sinple shape |eaf node, add it to the scene graph.
26. /1 Col orCube is a Convenience Uility class
27. obj Spi n. addChi | d(new Col or Cube(0. 4));

28.
29. /1l Create a new Behavior object that perforns the desired
30. /1 operation on the specified transformobject and add it into

31. /1 the scene graph.
32. TransfornBD yAxi s = new TransfornBD() ;
33. Al pha rotationAl pha = new Al pha(-1, 4000);

34.

35. Rot ati onl nterpol ator rotator =

36. new Rot ati onl nterpol ator (rotationAl pha, obj Spin, yAxis,
37. 0.0f, (float) Math.Pl*2.0f);

38.

39. /1 a boundi ng sphere specifies a region a behavior is active
40. /! create a sphere centered at the origin with radius of 1
41. Boundi ngSpher e bounds = new Boundi ngSphere();

42. rot at or. set Schedul i ngBounds(bounds) ;

43. obj Spi n. addChi I d(rotator);

44.

45 return obj Root;

46:} /1 end of createSceneG aph nethod of Hell oJava3Dd

Code Fragment 1-8 Content Branch for Rotated Spinning Color Cube of HelloJava3Dd

The Java 3D Tutorial 1-31

Getting Started with Java 3D

Chapter 1. Getting Started

objRoot

ColorCube

Figure 1-20 Scene Graph for HelloJava3Dd Example

Theimage in Figure 1-21 shows one frame of the spinning and rotated ColorCube from HelloJava3Dd.

=5 Hellodava3D

Figure 1-21 An Image of the Color Cubein Rotation as Rendered by HelloJava3Dd

The Java 3D Tutorial

Getting Started with Java 3D Chapter 1. Getting Started

1.10 Chapter Summary

This chapter begins assuming the reader knows nothing about Java 3D. Through the course of the chapter
the reader is introduced to some of the most important classesin the Java 3D API. Explanation is given for
how these classes, and classes from other packages, are used to assemble a scene graph. The scene graph,
which describes a virtua universe, and how the view is to be rendered, is discussed in some detail. The
SimpleUniverse utility class is used to create a series of example programs that demonstrate the simplest
Java 3D program, a simple transformation, a combination of transformations, behavior, and combining
transformation and behavior. Later in the chapter come explanations of capabilities of objects and the
compiling of branch graphs.

1.11 Self Test

On this page are a few exercises intended to test and enhance your understanding of the material presented
in this chapter. The solutions to some of these exercises are given in Appendix C.

1. In the HelloJava3Db program, which combines two rotations in one TransformGroup, what would be the
difference if you reverse the order of the multiplication in the specification of the rotation? Alter the
program to seeif your answer is correct. There are only two lines of code to change to accomplish this.

2. In the HelloJava3Dd program, what would be the difference if you reverse the order of the Transform
Nodes above the ColorCube in the content branch graph? Alter the program to see if your answer is
correct.

3. In search of performance improvements, a programmer might want to make the scene graph smaller®.
Can you combine the rotation and the spin target transform of HelloJava3Dd into one TransformGroup
object?

4. Trandate the ColorCube 1 unit in the Y dimension and rotate the cube. Y ou can use HelloJava3Db as a
gtarting point. The code that follows the question shows the specification of a trandation transformation.
Try the transformation in the opposite order. Do you expect to see a difference in the results? If so, why?
If not, why not? Try it and compare your expectations to the actua results.

TransfornBD transl ate = new Transfor n8D();
Vect or 3f vector = new Vector3f(0.0f, 1.0f, 0.0f);
transl at e. set Tr ansf or m{ vect or) ;

5. In HelloJava3Dc, the bounding sphere has a radius of 1 meter. Is this value larger or smaller than it
needs to be? What is the smallest value that would guarantees the cube will be rotating if it isin view?
Experiment with the program to verify your answers. The following line of code can be used to specify a
bounding sphere. In thisline, the Point3D object specifies the center, followed by the radius.

Boundi ngSpher e bounds =
new Boundi ngSpher e(new Poi nt 3d(0. 0, 0.0, 0.0), 100.0);

6. The example programs give sufficient information for assembling a virtual universe with multiple color
cubes. How do you construct such a scene graph? In what part of the code would this be accomplished?

® Performance is directly related to scene graph size. The most effective change is to reduce the number of
Shape3D objects in a scene graph. Refer to the Java 3D performance whitepaper available at java.sun.com/docs.

The Java 3D Tutorial 1-33

	Table of Contents
	List of Figures
	1-1 Symbols Representing Objects in Scene Graph Diagrams
	1-2 First Scene Graph Diagram Example
	1-3 Example of an Illegal Scene Graph (not a DAG)
	1-4 Fix for Illegal Scene Graph of Figure 1-3
	1-5 An Overview of the Java 3D API Class Hierarchy
	1-6 Recipe for Writing Java 3D Programs
	1-7 A SimpleUniverse Object Provides a Minimal Virtual Universe
	1-8 Simple Recipe for Writing Java 3D Programs
	1-9 Conceptual Drawing of Image Plate and Eye Positions in a Virtual Universe
	1-10 Conceptual Renderer Process
	1-11 Scene Graph for HelloJava3Da Example Program
	1-12 Image Produced by HelloJava3Da
	1-13 Scene Graph for Content Branch Graph Created in Code Fragment 1-5
	1-14 Scene Graph Diagram for HelloJava 3Db Example Program
	1-15 Image of Rotated ColorCube Rendered by HelloJava3Db
	1-16 Conceptual Example of the Result of Compiling a Scene Graph
	1-17 Recipe for Adding Behaviors to a Java 3D Visual Object
	1-18 Scene Graph Diagram for HelloJava3Dc Example Program
	1-19 An Image of the ColorCube in Rotation as Rendered by HelloJava3Dc
	1-20 Scene Graph for HelloJava3Dd Example Program
	1-21 An Image of the ColorCube in Rotation as Rendered by HelloJava3Dd

	List of Code Fragments
	1-1 Class HelloJava 3Da
	1-2 Method createSceneGraph for Class HelloJava3Da
	1-3 Main() Method of HelloJava3Da Invokes MainFrame
	1-4 Import Statements for HelloJava3Da.java
	1-5 One Rotation in the Content Branch Graph
	1-6 Two Rotation Transformations in HelloJava3Db
	1-7 createSceneGraph method with RotationInterpolator Behavior
	1-8 Content Branch for Rotated Spinning ColorCube of HelloJava3Dd

	List of Reference Blocks
	SimpleUniverse Constructors
	ViewingPlatform setNominalViewingTransform() Method
	SimpleUniverse Methods (partial list)
	BranchGroup compile() Method
	SceneGraphObject Methods (partial list)
	MainFrame Constructor (partial list)
	BranchGroup Default Constructor
	Canvas3D Constructor
	Transform3D Default Constructor
	Transform3D Methods (partial list)
	TransformGroup Constructors
	TransformGroup setTransform() Method
	Vector3f Constructors
	ColorCube Constructors
	SceneGraphObject Methods (partial list)
	TransformGroup Capabilities (partial list)
	Group Capabilities (partial list)
	RotationInterpolator Constructor (partial list)
	Alpha Constructor
	Behavior setSchedultingBounds method
	BoundingSphere Constructors (partial list)

	Preface to Chapter 1
	Preface to the Tutorial (Chapter0)
	Chapter 1: Getting Started
	1.1 What is Java 3D
	1.2 The Java 3D API
	1.3 Building a Scene Graph
	1.3.1 High Level Java 3D API Class Hierarchy

	1.4 Recipe for Writing Java 3D Programs
	1.4.1 A Simple Recipe for Writing Java 3D Programs
	SimpleUniverse Class

	1.5 Some Java 3D Terminology
	1.6 Simple Recipe Example: HelloJava3Da
	1.6.1 Java 3D Classes Used in HelloJava3Da
	BranchGroup Class
	Canvas3D Class
	Transform3D Class
	TransformGroup Class
	Vector3f Class
	ColorCube Class

	1.7 Rotating the Cube
	1.7.1 Combination of Transformations Example: HelloJava3Db

	1.8 Capabilites and Performance
	1.8.1 Compiling Contents
	1.8.2 Capabilities

	1.9 Adding Animation Behavior
	1.9.1 Specifying Animation Behavior
	Rotation Interpolator Class

	1.9.2 Time Varying Functions: Mapping a Behavior to Time
	Alpha Class

	1.9.3 Sceduling Region
	BoundingSphere Class

	1.9.4 Behavior Example: HelloJava3Dc
	1.9.5 Transformation and Behavior Combination Example: HelloJava3Dd

	1.10 Chapter Summary
	1.11 Self Test

	Appendix A - Summary of Example Programs
	Appendix B - Reference Material
	Appendix C - Solutions to Selected Self Test Questions
	Glossary
	Chapter 0: Overview and Appendices
	Chapter 2: Creating Geometry
	Chapter 3: Easier Content Creation
	Chapter 4: Interaction
	Chapter 5: Animation
	Chapter 6: Lights
	Chapter 7: Textures

