Getting Started with
the Java 3D™ API

Chapter 5
Animation

NEREA AN

Dennis J Bouvier
K Computing

@&Sun

T version 1.5 (Java3D APl v 1.1.2)

Module2: Interaction and Animation Chapter 5. Animation

© 1999 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A
All Rights Reserved.

The information contained in this document is subject to change without notice.

SUN M CROSYSTEMS PROVI DES THI' S MATERI AL "AS | S" AND MAKES NO WARRANTY OF ANY KI ND,
EXPRESSED OR | MPLI ED, | NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE. SUN M CROSYSTEMS SHALL NOT BE
LI ABLE FOR ERRORS CONTAI NED HEREI N OR FOR | NCl DENTAL OR CONSEQUENTI AL DAMAGES

(1 NCLUDI NG LOST PROFI TS | N CONNECTI ON W TH THE FURNI SHI NG PERFORMANCE OR USE OF

TH S MATERI AL, WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL THEORY).

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY MADE TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES
IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Some states do not alow the exclusion of implied warranties or the limitations or exclusion of liability for incidental or
consequential damages, so the above limitations and exclusion may not apply to you. This warranty gives you specific legal
rights, and you also may have other rights which vary from state to state.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL purposes and without fee is
hereby granted provided that this copyright notice appearsin all copies.

This documentation was prepared for Sun Microsystems by K Computing (530 Showers Drive, Suite 7-225, Mountain View,
CA 94040, 770-982-7881, www.kcomputing.com). For further information about course development or course delivery,
please contact either Sun Microsystems or K Computing.

Java, JavaScript, Java 3D, HotJava, Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun
Microsystems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

The Java 3D Tutorial

Module 2: Interaction and Animation

Table of Contents

Chapter 5

F o 411007 (L0 o PRSP R PSPPSR 5-1
5.1 ANIMELIONS. ...ttt ettt s e st e e b e e ae e e s e e s he e sae e e s e e be e nan e e ne e ne e s neennn e e neennes 5-1
5.2 Interpolators and Alpha Object Provide Time-based ANIMaLions...........cccoeeicerenieeeiieenee e 5-2
I R N 1o 7= TSRO PP PPUR PRSI 5-2
5.2.2 Using Interpolator and Alpha ODJECES.ooiieiiie e 5-4
5.2.3 Example Using Alpha and RotationlNterpolatorcceieereerieeneesie e 5-4
5.2.4 AIPNAAPI ..ottt ettt e b e re e 5-8
5.25 Interpolator BENaVior ClaSSES........cuiiuiiiiiie et e et et e e e eneeas 5-10
5.2.6 Corelnterpolator APo e eneeas 5-12
5.2.7 Path INterPOlator CIASSES........ueeiiiieiie ettt st e e e e see e e sneeeeneeas 5-20
5.3 BIllDOAIT CIESS.....c.ueiiiiiiieeiieee ettt s 5-24
5.3.1 Using aBillboard ODJECL.........cocuiiiiiiiiiiieee e 5-24
5.3.2 Example BillDoard Program ..o 5-25
5.3.3 BIlIDOGIA AP ... e 5-26
5.4 Level of Detall (LOD) ANIMELIONS......cccutiiierieerreeieesieeeire e sre e sne e e e nneenees 5-28
54.1 Using aDistanCelLOD ODJECL.......ccciiuiriieiieiieeie e 5-29
54.2 Example Usage of DIStANCELODcooiiiiiiiieiiee et see et e e 5-29
5.4.3 DistaNCELOD APl ..ot 5-31
5.4.4 LOD (Level Of Detail) APcccoiiiiiiiiiieiieiee et 5-32
5.5 IMOIPN e s 5-33
551 USING aMOIPh OBJECL.eoiiiee ittt s eeneeas 5-34
5.5.2 Example Morph Application: WalKing...........coouiiieiieiiinieeeesee e 5-34
5.5.3 MOIPIN AP e s 5-37
5.6 Chapter SUMMBIY.....cc.eiiiieieeiie ettt r e e an e s e e s e ssn e e s e e nneennneeneas 5-38
IS = | 1= S TSP PR U RPN 5-38

The Java 3D Tutoria 5-i Last saved on 10/16/99 2:49 AM

Module 3: Interaction and Animation Chapter 5. Animation

List of Figures

Figure 5-1 Some Classes used in Java 3D ANIMELIONS..........cooieiieiieeieeeesee e 5-2
Figure 5-2 Phases of the AIPha WaVefOrM.ooiiii e 5-3
Figure 5-3 Some Basic Waveforms Easily Made with an Alpha Object.cocooeiiiiiiiiiicece 5-4
Figure 5-4 Recipe for Using an Interpolator and Alpha Objects for Animation............ccceceeeveerenceeeneen. 5-4
Figure 5-5 Scene Rendered at 4:30 by the ClockApp Example Program.cccceveiieenienieniecseee 5-6
Figure 5-6 Smoothing of the Waveform Produced by Alpha..........coooiieiiiiieee e 5-7
Figure 5-7 Four Scenes Rendered by AlphaApp Showing the Effect of IncreasingAlphaRampDuration. .5-7
Figure 5-8 Java 3D Core and Utility (shaded boxes) Interpolator Classes Hierarchy.ccccccoeveieenee 5-10
Figure 5-9 Two Scenes from InterpolatorApp Showing Various INterpolators............coovvrveeieeneernenns 5-11
Figure 5-10 Partial Scene Graph Diagram of a Colorinterpolator Object and its Target Materia

NOAECOMPONENT ODJECL. ... eeeiieeeiiee et e et et e e saee e s ne e e sate e e sneeeeneeesneeeenneeeennes 5-13
Figure 5-11The Relationship Between Knots and Alpha Value for a 2D Position Example. 5-20
Figure 5-12 Recipe for Using a Path Interpolator ObJeCtcoeiiiiiiii e 5-21
Figure 5-13A Scene Rendered by RotPosPathApp Showing the Interpolation of the Rotation and Position

of the Color Cube. The Red Dots Show the Knots Positions of the Example Application.............. 5-22
Figure 5-14 Recipe for Using a Billboard Object to Provide ANimation.ccooccereieeniieescee e 5-24
Figure 5-15 Diagram of Scene Graph Using a Billboard Object as Created in Code Fragment 5-3. 5-26
Figure 5-16 Image of BillboardApp with al 2D Trees Facingthe Viewer...........cccovvoeevieeiee e 5-26
Figure 5-17 Recipe for Using a DistanceL OD Object to Provide ANimMation.c.ccceeeeeeeicereneeeene. 5-29
Figure 5-18 Partial Scene Graph Diagram for DistanceL ODApp Example Program............cccccceevernenne 5-30
Figure 5-19 Two Scenes Rendered from DistanCEL ODAPP.ccveeieeriiriieiieenee st 5-31
Figure 5-20 Recipe for Using aMorph OBJECL.oo i e e 5-34
Figure 5-21 Key Frame Images from MorphApp with the Trace of One VertexX.ccccevceeeveeeieeenee 5-36
Figure 5-22 A Scene Rendered from Morph3App Showing the Animations of Three Alternative Behavior

(01255 =S (o = = 1= oo o) ST 5-37

List of Code Fragments

Code Fragment 5-1 Using a Rotationlnterpolator and Alphato Spin a Clock (from ClockApp)............... 5-5
Code Fragment 5-2 An Excerpt from the CreateSceneGraph Method of RotPosPathApp.java.............. 5-21
Code Fragment 5-3 Except From the createSceneGraph Method of BillboardApp.java.cccccceeenee. 5-26
Code Fragment 5-4 Excerpt from createSceneGraph Method in DistanceL ODAPP. -.ceeovveeerveeeriereneeenns 5-30
Code Fragment 5-5 MorphBehavior Class from MOrphAPD. ..c..oeee i 5-35
Code Fragment 5-6 An Excerpt from the createSceneGraph Method of MOrphApp.cccvereeriieenieene 5-36
List of Tables

Table 5-1 Summary of Core INtErpolator CIASSES........ccuiiiiiiieiieiie e 5-11

The Java 3D Tutorial 5-ii

Module 3: Interaction and Animation Chapter 5. Animation

List of Reference Blocks

AIPa CONSIIUCION SUMIMEBIYvviiteeieeite sttt e e b e sse e s e s e e sseessn e e neesnnennne e neennes 5-8
AlphaMethod SUMMary (Partial 1St)coooeeeeee e e e 5-9
Interpolator Method Summary (Partial liSt).........coveieiiiieiiiie e 5-12
ColorInterpolator CONSIIUCLOr SUMIMEIYccveeiueerrieieesiee et esree et sne e sse e s e e sne e e e sneenneennes 5-13
Colorinterpolator Method Summary (Partial liSt)cceereeiieeiiei e 5-14
Positioninterpolator CONSIIUCION SUMIMEIYcoiuriiririeeiiee et ne e e e 5-14
Positioninterpolator Method Summary (partial TSt).......coeeereiiee e 5-15
Rotationlnterpolator CONSIIUCION SUMIMEIYcccuviiriiiieiieeriie et nnne e 5-15
Rotationlnterpolator Method Summary (Partial liSt).........ccveieeiiieiieiie e 5-16
Scalelnterpolator CONSITUCION SUMIMEIYcocveeiuieriiereesiee et sne s s 5-16
Scalelnterpolator Method SUMMEIY.........coviiieiie i 5-17
SwitchVauelnterpolator CONSIIUCLOr SUMIMEIYcooveeieiiieeiieie et 5-17
SwitchValuelnterpolator Method Summary (partial [1St)cocveieirieiieee e 5-18
SWitCh CONSITUCION SUMIMEIY ...ttt s e e e e e nne e nn e e ne e e 5-18
Switch Method Summary (Partial liSt)cooveeeeiiieee e 5-19
Switch Capability SUMIMEIYcccueiiieiie e n e ne e s 5-19
Transparencylnterpolator CONStrUCIOr SUMIMEIY........c.eiiiiireiieeeiieeeieeerieeeeeeesee e e seeeenneeeseeeesneeeeneens 5-19
Transparencylnterpolator Method SUMMEINYoooieiiiiiieeeee e 5-20
= 11110 g 00 = o 5-23
Pathl nterpolator Method Summary (Partial liSt)cooveiiiiiiiiee e 5-23
RotPosPathinterpolator CONSLIUCIOr SUMIMEIYcoeiiiieiieeeiieeeieeeeeeeeeeeseeesee e seeeesreeesneeeenneeeenees 5-23
RotPosPathlnterpolator Method SUMIMEIYcooviiiiiiieiee e 5-24
Billboard CONSIIUCION SUMIMEIYcoveeiiieiiieiiesiee ettt n e s e n e nneennneen 5-27
Billboard Method Summary (Partial liSt)ceeieerieriieieee e 5-28
Distancel. OD CONSIIUCIOr SUMIMEBIYc..verureireeiseesreereesseesseeaseesseesseessseesseesseesneesneesseessneeaneesnnesnneans 5-32
Distancel. OD Method SUMIMEIYccueiiiiriiiiieiiee sttt r e s sn e n e e sneennneens 5-32
L OD CONSITUCLON SUMIMIBIYeveeeeeeeeieee e essseesseeesmressssneesneessneessmseesneeesmneessnneesneeesnreessnseesaneeesnnes 5-32
LOD MENOU SUMIMBIYceiteeieeiie ettt sttt be e s e s e se e s se e s mn e e neenseesaneeneennnennnean 5-33
MOrph CONSITUCIOT SUMIMEIY ...ttt n e e an e s e e seessneeneenneennneen 5-37
Morph Method Summary (Partial liSt)c.eeeieeiiiiee e 5-38
Morph CapabilitiES SUMIMBIYcoveiiieiee et n e sneennneen 5-38

Prefaceto Chapter 5

This document is one part of atutorial on using the Java 3D API. You should be familiar with Java 3D
API basics to fully appreciate the material presented in this Chapter. Additional chapters and the full

preface to this material are presented in the Module O document available at:
http://java. sun. conl products/javamedi a/ 3d/ col | at eral

Cover Image

The cover image represents the key frame animation possible using a Morph object and the appropriate
behavior. Section 5.5 presents an example program utilizing a Morph object, an Alpha object, and a
Behavior object to animate a stick man.

The Java 3D Tutorial 5-iii

Module 2: Interaction and Animation

CHAPTER 5
Animation

e B

Chapter Objectives
After reading this chapter, you'll be able to:
use Alphaand Interpolator classes to add simple animations
use LOD and Billboard to provide computation saving animations
use Morph objects with custom behaviors to provide key frame animations

Cenain visual objects change independent of user actions. For example, a clock in the virtual world
should keep on ticking without user interaction. The clock is an example of animation. For the purposes of
this tutorial, animation is defined as changes in the virtua universe that occur without direct user action’.
By contrast, changes in the virtual universe as a direct result of user actions are defined as interactions.
Chapter 4 presents interaction classes and programs. This chapter is about animations.

5.1 Animations

As with interaction, animationsin Java 3D are implemented using Behavior objects’. As you might imagine,
any custom animation can be created using behavior objects. However, the Java 3D API provides a number
of classes useful in creating animations without having to create a new class. It should come as no surprise
that these classes are based on the Behavior class.

One set of animation classes are known as interpolators. An Interpolator object, together with an Alpha
object, manipulates some parameter of a scene graph object to create a time-based animation. The Alpha
object providesthe timing. Interpolators and Alpha objects are explained in Section 5.2.

! The distinction between animation and interaction made in this tutorial is fairly fine (direct is the key word here).
Chapter 4 provides an example to help clarify this distinction (see "Animation versus Interaction” on page 4-3).

2 Chapter 4 presents the Behavior class in detail and the application of Behaviors, in general. The material
presented in Section 4.2 is a prerequisite for this chapter.

The Java 3D Tutorial 51

Module 3: Interaction and Animation Chapter 5. Animation

Another set of animation classes animates visua objects in response to view changes. This set of classes
includes the billboard and Level of Detail (LOD) behaviors which are driven not by the passage of time, but
on the position or orientation of the view. Classes for both of these behaviors are provided in the Java 3D
core and presented in Sections 5.3 and 5.4, respectively. Figure 5-1 shows the high level class hierarchy for
animation classes.

Behavior

| Billboard ColorInterpolator

7| Interpolator E

—| LOD RotPosPathScal el nterpol ator

I

DistanceLOD

Figure 5-1 Some Classes used in Java 3D Animations

Section 5.5 presents the Morph class. The Morph class is used in both animation or interpolator
applications.

5.2 Interpolators and Alpha Object Provide Time-based Animations’

An Alpha object produces a value between zero and one, inclusive, depending on the time and the
parameters of the Alpha object. Interpolators are customized behavior objects that use an Alpha object to
provide animations of visual objects. Interpolator actions include changing the location, orientation, size,
color, or transparency of a visua object. All interpolator behaviors could be implemented by creating a
custom behavior class, however, using an interpolator makes creating these animations much easier.
Interpolator classes exist for other actions, including some combinations of these actions. The
Rotationlnterpolator class is used in an example program in Section 5.2.3.

521 Alpha

An alpha object produces a value, caled the alpha value, between 0.0 and 1.0, inclusive. The apha value
changes over time as specified by the parameters of the apha object. For specific parameter values at any
particular time, there is only one alpha value the alpha object will produce. Plotting the apha value over
time shows the waveform that the apha object produces.

The alpha object waveform has four phases: increasing alpha, alpha at one, decreasing alpha, and alpha at
zero. The collection of dl four phases is one cycle of the apha waveform. These four phases correspond
with four parameters of the Alpha object. The duration of the four phases is specified by an integer value
expressing the duration in milliseconds of time. Figure 5-2 shows the four phases of the alpha waveform.

All apha timings are relative to the start time for the Alpha object. The start time for al Alpha object is
taken from the system start time. Consequently, Alpha objects created at different times will have the same

% Section 1.9 introduced the Rotationinterpolator and Alpha classes. You may want to read that section
first. Also, the Java 3D API Specification covers Alphain detail.

The Java 3D Tutorial 5-2

Module 3: Interaction and Animation Chapter 5. Animation

dart time. As a result, al interpolator objects, even those based on different Alpha objects, are
synchronized.

Alpha objects can have their waveforms begin at different times. The beginning of an apha object's first
waveform cycle may be delayed by ether or both of two other parameters: TriggerTime and
PhaseDelayDuration. The TriggerTime parameter specifies atime after the StartTime to begin operation of
the Alphaobject. For atime specified by the PhaseDelayDuration parameter after the TriggerTime, the first
cycle of the waveform begins®. Figure 5-2 shows the StartTime, TriggerTime and PhaseDelayDuration.

An apha waveform may cycle once, repeat a specific number of times, or cycle continuously. The number
of cyclesis specified by the loopCount parameter. When the loopCount is positive, it specifies the number
of cycles. A loopCount of —1 specifies continuous looping. When the alpha waveform cycles more than
once, only the four cyclesrepeat. The phase delay is not repeated.

A
duration of one cycle duration of second cycle
%1‘0-— .Illlllllll‘
® - R
> ¥ .
© * .
< * -
[=X o .
®© U -
* *
00 o MO
Sl Ske Ske Ske .
T i i i time

program start tim \
trigger tim

phase delay-

4 Phases of Alpha Waveform
1. increasingAlphaDuratio
2. alphaAtOneDuration
3. decreasingAlphaDuration
4. alphaAtZeroDuration

Figure 5-2 Phases of the Alpha Waveform.

An aphawaveform does not aways use all four phases. An apha waveform can be formed from one, two,
three, or four phases of the Alpha waveform. Figure 5-3 shows waveforms created using one, two, or three
phases of the Alphawaveform. Six of the 15 possible phase combinations are shown in the figure.

* Either startTime or phaseDelayDuration can be used for the same purpose. It is arare application that requires the
use of both parameters.

The Java 3D Tutorial 53

Module 3: Interaction and Animation Chapter 5. Animation

basic waveforms of basic waveforms of some other
INCREASING_ENABLE DECREASING _ENABLE waveforms
mode mode

v

/7 0 NN A
i N A

Figure 5-3 Some Basic Waveforms Easily Made with an Alpha Object.

The alpha object has two modes which specify a subset of phases are used. The INCREASING_ENABLE
mode indicates the increasing alpha and alpha at one phases are used. The DECREASING_ENABLE mode
indicates the decreasing alpha and alpha at zero phases are used. A third mode is the combination of these
two modes indicating that all four phases are used.

v

The mode specification overrides the duration parameter settings. For example, when the mode is
INCREASING _ENABLE, the DecreasingAlphaDuration, DecreasingAlphaRampDuration®, and
AlphaAtZeroDuration parameters are ignored. While any waveform may be specified by setting the
duration of unwanted phases to zero, the proper specification of the mode increases the efficiency of the
Alpha object.

5.2.2 Using Interpolator and Alpha Objects

The recipe for using Interpolator and Alpha objects is very similar to using any behavior object. The major
difference from the behavior usage recipe (given in Section 4.2.2) isto include the Alpha object. Figure 5-4
gives the basic interpolator and alpha object usage recipe®.

1. create the target object with the appropriate capability

2. create the Alpha object

3. create the Interpolator object referencing the Alpha object and target object
4. add scheduling bounds to the Interpolator object

5. add Interpolator object to the scene graph

Figure 5-4 Recipefor Using an Interpolator and Alpha Objectsfor Animation.

5.2.3 Example Using Alpha and Rotationlnter polator

Cl ockApp. j ava is an example use of the Rotationinterpolator class. The sceneis of aclock face. The
clock is rotated by a RotationInterpolator and Alpha objects once per minute. The complete code for this
exampleisincluded in theexanpl es/ Ani mat i on subdirectory of the examplesjar’.

® The ramp parameters are discussed in the 'Smoothing of the Alpha Waveform' Section on page 5-6

® Thisis the same recipe as given in Section 1.9.4.

" The examples jar contains al of the source code for the examples in The Java 3D Tutoria; available for download
from The Java 3D website.

The Java 3D Tutorial 5-4

Module 3: Interaction and Animation Chapter 5. Animation

In this application, the target object is a TransformGroup object. The ALLOW TRANSFORM WRI TE
capability is required for the TransformGroup target object. Some other interpolators act upon different
target objects. For example, the target of a Colorinterpolator object is a Material object. An interpolator
object sets the value of its target object based on the alpha value and values that the interpolator object
holds.

The interpolator defines the end points of the animation. In the case of the Rotationlinterpolator, the object
specifies the start and end angles of rotation. The alpha controls the animation with respect to the timing
and how the interpolator will move from one defined point to the other by the specification of the phases of
the alpha waveform.

This application uses the default Rotationlnterpolator settings of a start angle of zero and an end angle of
2P (one complete rotation). The default axis of rotation is the y-axis. The alpha object is set to
continuously rotate (loopCount = -1) with a period of one minute (60,000 milliseconds). The combination
of these two objects will cause the visua object to rotate one full rotation every minute. The cycle
continuoudly and immediately repeats. The result looks like the clock is continuoudly spinning, not that the
clock spins once and starts over.

Code Fragment 5-1 shows the cr eat eSceneG aph method from Cl ockApp. j ava. This code
fragment is annotated with the steps from the recipe of Figure 5-4.

1. public BranchG oup createSceneG aph() {

2. /1l Create the root of the branch graph

3. BranchG oup obj Root = new BranchG oup();

4.

5. /1 create target TransformG oup with Capabilities

6. @ TransfornmGoup obj Spin = new TransfornGoup();

7. obj Spi n. set Capabi | i t y(Tr ansf or na oup. ALLON TRANSFORM VWRI TE) ;

8.

9. /1 create Al pha that continuously rotates with a period of 1 mnute
10. ® Al pha al pha = new Al pha (-1, 60000);

11.

12. /1 create interpolator object; by default: full rotation about y-axis
13. © Rotationlnterpolator rotlnt = new Rotationlnterpol at or (al pha, obj Spin);
14. @ rotlnt.set Schedul i ngBounds(new Boundi ngSphere());

15.

16. [assenbl e scene graph

17. © obj Root . addChi | d(obj Spi n);

18. obj Spi n. addChi | d(new O ock());

19. obj Root . addChi I d(rotInt);

20.

21. /1 Let Java 3D performoptim zations on this scene graph.

22. obj Root . conpi |l e() ;

23.

24 return obj Root;

25:} /1 end of CreateSceneG aph met hod of C ockApp

Code Fragment 5-1 Using a Rotationlnter polator and Alphato Spin a Clock (from ClockApp).

Figure 5-5 is of a scene rendered by ClockApp at 4:30. The clock face is oblique to the viewer since the
entire clock face isrotating.

The Java 3D Tutorial 55

Module 3: Interaction and Animation Chapter 5. Animation

E'-;_,% Eluckﬁtpp‘

o
Figure 5-5 Scene Rendered at 4:30 by the ClockApp Example Program.

The ClockApp program shows a simple application of the Rotationlnterpolator. The Clock object, defined
in Cl ock.java available in the exanpl es/ Ani mati on subdirectory, shows a more advanced
application of the Rotationinterpolator object. The clock object in the program uses one
Rotationlnterpolator object to animate each hand of the clock®. However, only one apha object is used in
the clock. It is not necessary to use one Alpha object to coordinate the hands; as noted above, all Alpha
objects are synchronized on the program start time. However, sharing one Alpha object saves system
memory.

Some of the potentially interesting features of the Clock Class are:
the setting of the start and end angles for the hands,
the setting of the axes of rotation, and
the setting of the polygonal culling for the various components of the clock.

The source code for the clock is in Cl ock. j ava, also available in the exanpl es/ Ani mati on
subdirectory. The study of the Clock class is|eft to the reader.

Smoothing of the Alpha Waveform

In addition to the duration of the four phases, the programmer can specify aramp duration for the increasing
alpha and decreasing alpha phases. During the ramp duration, the alpha value changes gradually. In the
case of motion interpolators, it will appear as though the visual object is accelerating and decelerating in a
more natura, real world, manner.

The ramp duration value is used for both the beginning and ending portions of the phase and therefore the
ramp duration is limited to half of the duration of the phase. Figure 5-6 shows an Alpha waveform with
both IncreasingAlphaRampDuration and a DecreasingAlphaRampDuration. Note that the alpha vaue
changes linearly between the two ramp periods.

8 Since the clock has front and back facing hands, there are four hands and four Rotationl nterpolator objects.

The Java 3D Tutorial 5-6

Module 3: Interaction and Animation Chapter 5. Animation

IncreasingAlphaRampDuration DecreasingAlphaRampDuration
(e N e ‘L\I

! —— —

L
|
|
|
|
Criger Tide
|

- ——— — — =

IncreasingAlphaDuration DecreasingAlphaDuration

Figure 5-6 Smoothing of the Waveform Produced by Alpha’

An example program, Al phaApp. j ava, demonstrates the effect of an IncreasingAlphaRampDuration on
an Alphawaveform. In this program there are three car visua objects. The three cars start at the same time
from the same x coordinate and travel parallel. The upper car has no ramp (ramp duration = 0), the bottom
car has maximum ramp duration (half of the duration of the increasing or decreasing apha duration), and
the middle car has half the maximum ramp duration (one quarter of the duration of the increasing or
decreasing apha duration). Each car takes two seconds to cross the view. In Figure 5-7 shows four scenes
rendered from this application.

ramp

! time~ 04s time~ 0.8s time~1.2s time~ 1.6s
duration
E2alphatpp F4Alphadpp F4Alphadpp F4Alphadpp
none —— i i .
s —_— —-_— -—r ==
full —-— == == ——

Figure 5-7 Four Scenes Rendered by AlphaApp Showing the Effect of I ncreasingAlphaRampDur ation.

At about 0.4 seconds after the cars start, the first (left) image of Figure 5-7 was captured showing the
positions of the cars. The top car, which will proceed at a constant rate in the absence of a ramp, has
traveled the most distance in the first frame. The other two cars begin more slowly and accelerate. At one
second (not shown), al the cars have traveled the same distance. The relative positions reverse during the
second half of the phase. At the end of the two second phase, each of the cars have traveled the same
distance.

The source for Al phaApp isavailablein theexanpl es/ Ani mat i on subdirectory.

® Justin Couch provided the inspiration and most of the artwork for this figure.

The Java 3D Tutorial 57

Module 3: Interaction and Animation Chapter 5. Animation

5.2.4 AlphaAPI

The APl of the Alpha class is straightforward. Four constructors cover the most common apha
applications. A plethora of methods, listed in the next reference block, make easy work of customizing an
Alpha object to fit any application.

Alpha Constructor Summary
extends: Obj ect

The alpha class converts atime value into an alpha value (avaluein the range 0 to 1, inclusive). The Alpha object
is effectively a function of time that generates values in the range [0,1]. A common use of the Alpha provides alpha
valuesfor Interpolator behaviors. The characteristics of the Alpha object are determined by user-definable
parameters. Refer to Figure 5-2, Figure 5-6, and the text accompanying these figures for more information.

Al pha()
Constructs an Alpha object with mode = INCREASING_ENABLE, loopCount = -1, increasingAlphaDuration =
1000, al other parameters = 0, except StartTime. StartTime is set as the start time of the program.

Al pha(int [oopCount, |ong increasingAl phaDurati on)
This constructor takes only the loopCount and increasingAlphaDuration as parameters, sets the mode to
INCREASING_ENABLE and assigns 0 to al of the other parameters (except StartTime).

Al pha(int | oopCount, long triggerTine, |ong phaseDel ayDurati on,
| ong i ncreasi ngAl phaDuration, |ong increasi ngAl phaRanmpDur ati on,
| ong al phaAt OneDur at i on)

Constructs a new Alpha object and sets the mode to INCREASING_ENABLE.

Al pha(int |oopCount, int node, long triggerTime, |ong phaseDel ayDurati on,
| ong i ncreasi ngAl phaDuration, |ong increasi ngAl phaRanmpDur ati on,
| ong al phaAt OneDur ati on, | ong decreasi ngAl phaDur ati on,
| ong decr easi ngAl phaRanpDur ati on, |ong al phaAt Zer oDur ati on)

This constructor takes all of the Alpha user-definable parameters.

The Java 3D Tutorial 5-8

Module 3: Interaction and Animation Chapter 5. Animation

Alpha Method Summary (partial list)

Refer to Figure 5-2, Figure 5-6, and the text accompanying these figures for more information. Each of the set-
methods has a matching parameterless get-method which returns the a value of the type that corresponds to the
parameter of the set-method.

bool ean fi ni shed()
Query to test if this alpha object has finished all its activity.

voi d set Al phaAt OneDur ati on(l ong al phaAt OneDur at i on)
Set this alpha's alphaAtOneDuration to the specified value.

voi d set Al phaAt Zer oDur ati on(| ong al phaAt Zer oDur at i on)
Set this alpha's alphaAtZeroDuration to the specified value.

voi d set Decr easi ngAl phabDur ati on(l ong decr easi ngAl phaDur ati on)
Set this alpha's decreasingAlphaDuration to the specified value.

voi d set Decr easi ngAl phaRanpDur ati on(l ong decr easi ngAl phaRanpDur at i on)
Set this alpha's decreasingAlphaRampDuration to the specified value.

voi d set | ncreasi ngAl phabDur ati on(l ong i ncreasi ngAl phaDur ati on)
Set this alpha's increasingAlphaDuration to the specified value.

voi d set | ncreasi ngAl phaRanpDur ati on(l ong i ncreasi ngAl phaRanpDur at i on)
Set this alpha's increasingAlphaRampDuration to the specified value.

voi d set LoopCount (i nt | oopCount)
Set this alpha's loopCount to the specified value.

voi d set Mbde(int node)
Set this alpha's mode to that specified in the argument. This can be set to | NCREASI NG_ENABLE,
DECREASI NG_ENABLE, or the OR-ed value of the two.

DECREASI NG_ENABLE - Specifies that phases 3 and 4 are used

| NCREASI NG_ENABLE - Specifies that phases 1 and 2 are used.

voi d set PhaseDel ayDur ati on(l ong phaseDel ayDur at i on)
Set this alpha's phaseDelayDuration to that specified in the argument.

void setStartTi me(l ong start Ti nme)
Sets this alpha's startTime to that specified in the argument; startTime sets the base (or zero) for all relative time
computations; the default value for startTime is the system start time.

voi d set TriggerTi me(long triggerTine)
Set this alpha's triggerTime to that specified in the argument.

float val ue()
This function returns a value between 0.0 and 1.0 inclusive, based on the current time and the time-to-al pha
parameters established for this apha.

float val ue(l ong atTi ne)

This function returns a value between 0.0 and 1.0 inclusive, based on the specified time and the time-to-alpha
parameters established for this apha.

The Java 3D Tutorid 59

Module 3: Interaction and Animation Chapter 5. Animation

5.25 Interpolator Behavior Classes

Figure 5-8 shows the Interpolator classes in the core and utility packages. In this figure, you can see there
are over 10 interpolator classes, and that they are all subclasses of the Interpolator class. Also, the
Interpolator class is an extension of Behavior. The two shaded boxes represent utility interpolator classes,
the other boxes represent core interpolator classes.

PositionPathlnterpolator
javalang.Object Colorlnterpolator RotationPathl nterpolator
SceneGraphObject Pathinterpolator RotPosPathlnterpolator
Node Positionlnterpolator RotPosScal ePathli nterpol ator
L‘ Leaf Rotationl nterpolator
Behavior Scalelnterpolator
Interpolator SwitchValuel nterpolator
Transparency|nterpolator
TCBSplinePathl nterpol ator RotPosScal eSplinePathl nterpol ator

Figure 5-8 Java 3D Core and Utility (shaded boxes) Interpolator Classes Hierarchy.

Each interpolator is a custom behavior with atrigger to wake each frame. In the processStimulus method,
an interpolator object checks its associated a pha object for the current apha value, adjusts the target based
on the alpha value, then resets its trigger to wake next frame (unless the apha is finished). Some of this
functionality is provided in the Interpolator class. Most of this behavior is implemented in each individual
interpolator class.

Most interpolator objects store two values that are used as the end points for the interpolated action. For
example, the Rotationlnterpolator stores two angles that are the extremes of the rotation provided by this
interpolator. For each frame, the interpolator object checks the alpha value of its Alpha object and makes
the appropriate rotational adjustment to its target TransformGroup object. |If the alpha value is O, then one
of the values is used; if the alpha value is 1, the other value is used. For alpha vaues between 0 and 1, the
interpolator linearly interpolates between the two values based on the alpha value and uses the resulting
value for the target object adjustment.

This general interpolator description does not describe the SwitchValuelnterpolator nor Pathlnterpolator
classes well. The SwitchVa uelnterpolator chooses one among the children of the Switch group target node
based on the apha value; therefore, no interpolation is done in this class.

The Pathinterpolator class, and its subclasses, are described in Section 5.2.7 on page 5-20.

While the various interpolator classes are similar, they aso differ in some details. In summarizing the seven
core subclasses of the Interpolator class, Table 5-1 shows some of the differences among interpolator
classes.

The Java 3D Tutorial 5-10

Module 3: Interaction and Animation

Table5-1 Summary of Core Interpolator Classes

Chapter 5

. Animation

Interpolator class used to target object type page

Col or I nt er pol at or change the diffuse color of an | Material 5-12
object(s)

Pat hl nt er pol at or *° abstract class TransformGroup 5-20

Posi tionl nterpol at or change the position of an TransformGroup 5-14
object(s)

Rot ati onl nt er pol at or change the rotation TransformGroup 5-15
(orientation) of an object(s)

Scal el nt er pol at or change the size of an object(s) | TransformGroup 5-16

Swi t chVal uel nterpol ator | choose one of (switch) among | Switch 5-17
acollection of objects

Transparencyl nt erpol at or | change the transparency of an | TransparencyAttributes | 5-19
object(s)

An example program, | nt er pol at or App. j ava, demonstrates six non-abstract interpolator classes of

Table 5-1.

In this program, each interpolator object is driven by a single Alpha object. Figure 5-9 shows

two scenes rendered by InterpolatorApp. Changes in position, rotation, scale, color, transparency, and
visua object (top to bottom) are made by Positioninterpolator, Rotationlnterpolator, Scalelnterpolator,
ColorInterpolator, Transparencylnterpolator, and SwitchValuelnterpolator objects, respectively. The
complete source code for InterpolatorApp is available in the exanpl es/ Ani mat i on subdirectory of the

examples distribution.

E"g,% InterpolatorApp

—-—

1 0 I

=10 x|

Position

Rotation

Scde

Color

Transparency

SwitchVaue

E‘i InterpolatorApp

2o

=100 x|

——

Figure 5-9 Two Scenes from Inter polator App Showing Various Interpolators.

19 The Pathinterpolator class is an abstract class and does not have a target object, but each of the known extensions
of thisinterpolator have a TransformGroup target object. See Section 5.2.7 for more information.

The Java 3D Tutorial

511

Module 3: Interaction and Animation Chapter 5. Animation

I nterpolator Programming Pitfalls

Interpolator objects are derived from, and closely related to, behavior objects. Consequently, using
interpolator objects give rise to the same programming pitfalls as using behavior objects (see Programming
Pitfalls of Using Behavior Objects on page 4-9). In addition to these, there are general Interpolator
programming pitfalls, and specific pitfalls for some interpolator classes. Two general pitfalls are listed here
while the interpolator class specific ones are listed with the appropriate class reference blocks in the next
section.

One potential interpolator programming pitfall is not realizing that interpolator objects clobber the value of
its target objects. Y ou might think that the TransformGroup target of a Rotationlnterpolator can be used to
trandate the visual object in addition to the rotation provided by the interpolator. This is not true. The
transform set in the target TransformGroup object is re-written on each frame the Alpha object is active.
This also means that two interpolators can not have the same target object™.

Another general interpolator pitfall is not setting the appropriate capability for the target object. Failing to
do so will result in aruntime error.

5.2.6 Corelnterpolator API

As an abstract class, Interpolator is only used when creating a new subclass. The Interpolator class
provides only one method for users of Interpolator subclasses. Methods useful in writing subclasses are not
listed here. The magjority of the information needed for writing a subclass of interpolator can be gleaned
from Chapter 4.

Interpolator Method Summary (partial list)

extends: Behavi or

known subclasses: Col or | nt er pol at or, Pat hl nt er pol at or, Positionl nterpol at or,
Rot ati onl nt er pol at or, Scal el nterpol ator, Sw tchVal uel nt erpol at or,
TCBSpl i nePat hl nt er pol at or, Transpar encyl nt er pol at or

The Interpolation behavior is an abstract class that provides the building blocks used by its various interpolation
specializations.

voi d set Al pha(Al pha al pha)
Set this interpolator's alpha to the al pha object specified.

ColorInterpolator

A ColorInterpolator object has a Material object as its target. This interpolator changes the diffuse color
component of the target material. This makes the Colorinterpolator both powerful and limited. The power
comes from the ability of having more than one visual object share the same Materia object. So, one
Colorlnterpolator with one Material target can affect more than one visua object. The limitation is that
visual objects with a Material NodeComponent are only visible when lit.

The majority of the potential programming pitfalls are the result of the complexity of shaded (lit) scenes.
Lighting is sufficiently complex that it is the subject of an entire chapter, Chapter 6. For example, the color
of a shaded visua object is the combination of specular, diffuse, and ambient components. The
Colorlnterpolator only changes one of three components, the diffuse color, so in certain situations it is

" There is nothing preventing this, but only one of the interpolator objects will affect the target with the effect of the
others being overwritten.

The Java 3D Tutorial 5-12

Module 3: Interaction and Animation Chapter 5. Animation

entirely possible for it to appear that the Colorlnterpolator had no affect on the visua object (see Self Test
guestion 2). Rather than get into a detailed analysis of this and other potential lighting problems here, the
reader is referred to Chapter 6, specifically Sections 6.1 and 6.4.

Another less exotic potential programming pitfall is failing to add the target Materia object to the Shape3D
object. Figure 5-10 shows a partia scene graph diagram of a Colorlnterpolator and its target Materia
NodeComponent.

~ TN
’ A \
v v
e
N -~ N
N / \

\
v v
BoundingSphere

Figure 5-10 Partial Scene Graph Diagram of a ColorInterpolator Object and its Target Material
NodeComponent Object.

The ColorInterpolator is different from other interpolators in the format of its get-methods. The get-methods
of Colorlnterpolator are not paramterless as they are with the other interpolators. Consequently, the get-
methods of this class are listed with the set-methods.

ColorInterpolator Constructor Summary
extends: | nt er pol at or
This class defines a behavior that modifies the diffuse color of its target material object by linearly interpolating
between a pair of specified colors (using the value generated by the specified Alpha object).

Col orl nt er pol at or (Al pha al pha, Mterial target)
Constructs atrivial color interpolator with a specified target, a starting color of black, an ending color of white.

Col orl nt er pol at or (Al pha al pha, Material target, Col or3f startCol or,
Col or 3f endCol or)
Constructs a color interpolator with the specified target, starting color, and ending color.

The Java 3D Tutorial 5-13

Module 3: Interaction and Animation Chapter 5. Animation

ColorInterpolator Method Summary (partial list)

The get-methods do not follow the convention of other interpolators. They are listed here.

voi d set EndCol or (Col or 3f col or)
Sets the endColor for this interpolator.
matching get-method: voi d get EndCol or (Col or 3f col or)

voi d set Start Col or (Col or 3f col or)
Sets the startColor for this interpolator.
matching get-method: voi d get St art Col or (Col or 3f col or)

voi d set Target (Material target)
Sets the target material component object for this interpolator.
matching get-method: Vat eri al get Tar get ()

Positionl nter polator

The PositionInterpolator varies the position of avisual object(s) aong an axis. The specification of the end
points of interpolation is made with two floating point values and an axis of trandation. The default axis of
trandation is the x-axis.

Positionl nter polator Constructor Summary
extends: | nt er pol at or

This class defines a behavior that modifies the translational component of its target TransformGroup by linearly
interpolating between a pair of specified positions (using the value generated by the specified Alpha object). The
interpolated position is used to generate a translation transform along the local X-axis (or the specified axis of
translation) of this interpolator.

Posi ti onl nt er pol at or (Al pha al pha, Transforna oup target)
Constructs atrivial position interpolator with a specified target, with the default axis of trandation (X), a
startPosition of 0.0f, and an endPosition of 1.0f.

Posi ti onl nt er pol at or (Al pha al pha, Transfornma oup target,

TransfornB8D axi sOf Transl ati on, float startPosition, float endPosition)
Constructs a new position interpolator that varies the target TransformGroup's translational component
(startPosition and endPosition) along the specified axis of translation.

The Java 3D Tutorial 5-14

Module 3: Interaction and Animation Chapter 5. Animation

Positionl nter polator Method Summary (partial list)

Each of the set-methods has a matching parameterless get-method which returns a value of the type corresponding
to the parameter of the set-method.

voi d set Axi sO Transl ati on(Tr ansf or nBD axi sCf Tr ansl at i on)
Sets the axis of trandlation for this interpolator.

voi d set EndPosi ti on(fl oat position)
Sets the endPosition for this interpolator.

voi d setStartPosition(float position)
Sets the startPosition for this interpolator.

voi d set Tar get (Transfor m& oup target)
Sets the target for this interpolator.

Rotationl nter polator

The Rotationinterpolator varies the rotational orientation of a visual object(s) about an axis. The
specification of the end points of interpolation is made with two floating point angle values and an axis of
rotation. The default axis of rotation is the positive y-axis.

Rotationl nter polator Constructor Summary
extends: | nt er pol at or

This class defines a behavior that modifies the rotational component of its target TransformGroup by linearly
interpolating between a pair of specified angles (using the value generated by the specified Alpha object). The
interpolated angle is used to generate a rotation transform about the local Y -axis of this interpolator, or the specified
axis of rotation.

Rot ati onl nt er pol at or (Al pha al pha, Transforna oup target)
Constructs atrivial rotation interpolator with a specified target, the default axis of rotation is used (+Y), a minimum
angle of 0.0f, and a maximum angle of 2*pi radians.

Rot ati onl nt er pol at or (Al pha al pha, Transforn& oup target,

TransfornB8D axi sOf Rotation, float m ni numAngl e, float nmaxi mumAngl e)
Constructs a new rotation interpolator that varies the target transform node's rotational component.

The Java 3D Tutorial 5-15

Module 3: Interaction and Animation Chapter 5. Animation

Rotationlnter polator Method Summary (partial list)

Each of the set-methods has a matching parameterless get-method which returns a value of the type corresponding
to the parameter of the set-method.

voi d set Axi sOF Rot ati on(Transf or 8D axi sOf Rot ati on)
Sets the axis of rotation for this interpolator, in radians.

voi d set Maxi mumAngl e(fl oat angl e)
Sets the maximumAngle for this interpolator, in radians.

voi d set M ni mumAngl e(fl oat angl e)
Sets the minimumAngle for thisinterpolator, in radians.

voi d set Target (Transf or m& oup target)
Sets the target TransformGroup node for this interpolator.

Scalel nter polator

The Scaelnterpolator varies the size of a visua object(s). The specification of the end points of
interpolation is made with two floating point values.

Scalel nterpolator Constructor Summary
extends: | nt er pol at or

Scale interpolation behavior. This class defines a behavior that modifies the uniform scale component of its target
TransformGroup by linearly interpolating between a pair of specified scale values (using the value generated by the
specified Alpha object). The interpolated scale value is used to generate a scale transform in the local coordinate
system of this interpolator.

Scal el nt er pol at or (Al pha al pha, TransfornG oup target)
Constructs atrivial scale interpolator that varies its target TransformGroup node between the two specified apha
values using the specified alpha, an identity matrix, a minimum scale = 0.1f, and a maximum scale = 1.0f.

Scal el nt er pol at or (Al pha al pha, Transfornaoup target, TransfornBD axi sOf Scal e,
float m ni muntScal e, float naxi muntcal e)

Constructs a new scalel nterpolator object that varies its target TransformGroup node's scale component between two
scale values (minimumScale and maximumsScal).

The Java 3D Tutorial 5-16

Module 3: Interaction and Animation Chapter 5. Animation

Scalel nter polator Method Summary

Each of the set-methods has a matching parameterless get-method which returns a value of the type corresponding
to the parameter of the set-method.

voi d set Axi sOf Scal e(Tr ansf or rBD axi sOF Scal e)
Sets the AxisOfScale transform for this interpolator.

voi d set Maxi muntcal e(fl oat scal e)
Sets the maximumScale for this interpolator.

voi d set M ni muntcal e(fl oat scal e)
Sets the minimumScal e for this interpolator.

voi d set Target (Transf or m& oup target)
Sets the target TransformGroup for this interpolator.

SwitchValuel nter polator

The SwitchVauelnterpolator doesn’t interpolate between values as other interpolators do. It selects one of
the children of a Switch object for rendering. The threshold values for switching to a different child are
determined by evenly dividing the 0.0 to 1.0 range by the number of children the Switch object has.
Reference blocks for the Switch class have been included in the next section.

One potential programming pitfall specific to the SwitchVauelnterpolator lies in the fact that the
interpolator is not updated when the number of children changes in the Switch object. More importantly, the
switching threshold values are determined when the SwitchValuelnterpolator object is created. So, if the
switch has no children before the interpolator is created, or if the number of children changes after the
interpolator object is created, then number of children in the interpolator object must be updated. The
advantage is that you can specify a subset of indices to be used by an interpolator. The subset islimited to a
sequential set of indices.

SwitchValuel nterpolator Constructor Summary
extends: | nt er pol at or

This class defines a behavior that modifies the selected child of the target switch node by linearly interpolating
between a pair of specified child index values (using the value generated by the specified Alpha object).

Swi t chVal uel nt er pol at or (Al pha al pha, Switch target)
Constructs a SwitchV aluel nterpolator behavior that varies its target Switch node's child index between 0 and n-1,
where n is the number of children in the target Switch node.

Swi t chVal uel nt er pol at or (Al pha al pha, Switch target, int firstcChildlndex,

i nt | astChil dl ndex)
Constructs a SwitchValuel nterpolator behavior that varies its target Switch node's child index between the two
values provided.

The Java 3D Tutorid 517

Module 3: Interaction and Animation Chapter 5. Animation

SwitchValuel nterpolator Method Summary (partial list)

Each of the set-methods has a matching parameterless get-method which returns a value of the type corresponding
to the parameter of the set-method.

voi d setFirstChildlndex(int firstlndex)
Sets the firstChildindex for this interpolator.

voi d set Last Chil dl ndex(int | astl ndex)
Sets the lastChildindex for this interpolator.

voi d set Target (Switch target)
Sets the target for this interpolator.

Switch

The switch class is listed here because it is used in the SwitchValuelnterpolator (and later in the
DistanceL OD). Switch is derived from Group and is the parent zero or more scene graph sub branches. A
Switch object can select zero, one, or more, including all, of its children to be rendered. Of course a Switch
object can be used without an interpolator or LOD object. The most commonly used method is the
addChi | d() method derived from the Group Class.

Switch Constructor Summary
extends: Gr oup

The Switch node controls which of its children will be rendered. It defines a child selection value (a switch value)
that can either select a single child, or it can select 0 or more children using a mask to indicate which children are
selected for rendering.

Swi t ch()
Constructs a Switch node with default parameters.

Swi t ch(i nt whi chChi | d)

Constructs and initializes a Switch node using the specified child selection index.
CH LD_ALL all children are rendered
CHI LD_MASK the childMask BitSet is used to select which children are rendered
CHI LD_NONE no children are rendered

Swi tch(int whichChild, java.util.BitSet chil dMvask)
Constructs and initializes a Switch node using the specified child selection index and mask.

The Java 3D Tutorial 5-18

Module 3: Interaction and Animation Chapter 5. Animation

Switch Method Summary (partial list)

Each of the set-methods has a matching parameterless get-method which returns a value of the type corresponding
to the parameter of the set-method.

voi d set Chi | dvask(java.util.BitSet chil dvask)
Sets the child selection mask.

voi d set Wi chChil d(int child)
Sets the child selection index that specifies which child is rendered.

Switch Capability Summary

ALLOW SW TCH READ | WRI TE
Specifies that this node allows reading its child selection and mask values and its current child.

Transparencylnter polator

A Transparencylnterpolator object has a TransparencyAttributes NodeComponent as its target. This
interpolator changes the transparency vaue of the target object. More than one visual object may share one
TransparencyAttributes object. So, one Transparencylnterpolator can affect more than one visual object.
Also, be aware that the various transparency modes may affect the rendering performance and appearance
of the visual object. Refer to the Java 3D APl Specification for more information on the
TransparencyAttributes Class.

A potentia programming pitfall specific to the Transparencylnterpolator is failing to add the target
TransparencyAttributes object to the appearance bundle of the visua object(s). Thisis similar to a potential
Colorinterpolator problem. See Figure 5-10 for anillustration of avisual object with an appearance bundle.

Transparencyl nterpolator Constructor Summary
extends: | nt er pol at or

This class defines a behavior that modifies the transparency of its target TransparencyAttributes object by linearly
interpolating between a pair of specified transparency values (using the value generated by the specified Alpha
object).

Tr anspar encyl nt er pol at or (Al pha al pha, TransparencyAttributes target)
Constructs atrivial transparency interpolator with a specified target, a minimum transparency of 0.0f and a
maximum transparency of 1.0f.

Transpar encyl nt er pol at or (Al pha al pha, TransparencyAttri butes target,
fl oat m ni numlr ansparency, float maxi numlransparency)

Constructs a new transparency interpolator that varies the target material's transparency between the two
transparency values.

The Java 3D Tutorid 5-19

Module 3: Interaction and Animation Chapter 5. Animation

Transparencyl nterpolator Method Summary

Each of the set-methods has a matching parameterless get-method which returns a value of the type corresponding
to the parameter of the set-method.

voi d set Maxi nunilr anspar ency(fl oat transparency)
Sets the maximumTransparency for this interpolator.

voi d set M ni nunilr anspar ency(fl oat transparency)
Sets the minimumTransparency for this interpolator.

voi d set Target (TransparencyAttributes target)
Sets the target TransparencyAttributes object for this interpolator.

5.2.7 Path Interpolator Classes

Path interpolator classes differ from the other interpolators in that they may store two or more values for
interpolation. The Java 3D core provides path interpolator classes for position interpolation, rotation
interpolation, position and rotation interpolation, and position, rotation, and scale interpolation. The target
of a path interpolator object is a TransformGroup object which changes the position, orientation, and scale,
as appropriate, for its child objects.

Path interpolator objects store a set of values, or knots, that are used two at a time for interpolation. The
alpha value determines which two knot values are used. The knot values are in the range of 0.0 to 1.0
inclusive, which corresponds to the range of vaues of the alpha object. The first knot must have a value of
0.0 and the last knot must have avalue of 1.0. The remaining knots must be stored in increasing order in the
path interpolator object.

The knot values correspond with vaues for the variable parameter(s) (e.g., position or rotation) used in
interpolation. There is one parameter value specified for each knot value. The knot with the largest value
equal or less than the apha value, and the next knot, are used. The knots are specified in order, so as the
alpha value changes, the knots are used in adjacent pairs.

The left panel of Figure 5-11 shows the knot values for a position path interpolator. For illustrative
purposes, only 2D positions are used. The center panel of the figure maps the position of the visua object
over the adpha vaues, 0.0 to 1.0. The right panel of the figure shows the knot values used for the various
alpha values of this example. The combination of knot values and apha parameters determines the
animation.

X,Y position for various alpha alphavalue (a) knots used
knot vaﬁjeﬁ 04 0.0 0
knot value position(x. y. z) e ' 0.0<a<0.2 0,1
0 00 (00,0000 N 10 0.2 1
1 02 (10,20,00) 4 0 02<a<04 1,2
2 04 (2.0,3.0,00) ' 0.4 2
3 05 (L0,10,00) A 0.9 04<a<05 2,3
4 08 (200000 -1/ 0.5 3
5 10 (3.0,3.0,00) 0847 05<a<08 3,4
0.0 | | 8 | I , 08 4
X 08<a<10 4,5
1.0 5

Figure 5-11The Relationship Between Knots and Alpha Valuefor a 2D Position Example.

The Java 3D Tutorial 5-20

Module 3: Interaction and Animation Chapter 5. Animation

Pathl nterpolator Example Application

Using a path interpolator object follows the same recipe as other interpolator objects. The only differenceis
in the number of values used to initialize the path interpolator object. Figure 5-12 presents the path
interpolator recipe.

1. create the target object with the appropriate capability

2. create the Alpha object

3. create arrays of knot and other values

4. create the path interpolator object referencing the Alpha object, target object, and arrays of settings
5. add scheduling bounds to the Interpolator object

6. add path interpolator object to the scene graph

Figure 5-12 Recipe for Using a Path Interpolator Object

The Rot PosPat hApp. j ava example program uses an RotPosPathinterpolator object to animate a
ColorCube object through a number of position and rotation values. The RotPosPathinterpolator stores sets
of rotations (as an array of Quat4f), positions (as an array of Point3f), and knot values (as an array of
float). The complete source for Rot PosPat hApp. j ava is available in the exanpl es/ Ani mat i on
subdirectory. Code Fragment 5-2 shows an excerpt from the example annotated with the recipe step
numbers.

1. public BranchG oup createSceneG aph() {

2. BranchG oup obj Root = new BranchG oup();

3.

4. Transform& oup target = new TransformG oup(); o
5. Al pha al pha = new Al pha(-1, 10000); 2]
6. Transf or nBD axi sOf Rot Pos = new Transf or n80() ;

7. float[] knots = {0.0f, 0.3f, 0.6f ,1.0f};

8. Quat 4f[] quats = new Quat 4f[4]; 3]
9. Poi nt 3f[] positions = new Point3f[4];

10.

11. target.set Capability(Transforma oup. ALLON TRANSFORM VWRI TE) ; o
12.

13. Axi sAngl e4f axis = new Axi sAngl e4f (1. 0f, 0. Of , 0. Of, 0. Of) ; 3
14. axi sOf Rot Pos. set (axi s);

15.

16. quat s[0] = new Quat4f (0.0f, 1.0f, 1.0f, 0.0f);

17. quats[1] = new Quat4f(1.0f, 0.0f, 0.0f, 0.0f);

18. quat s[2] = new Quat4f(0.0f, 1.0f, 0.0f, 0.0f); >9
19.

20. positions[0] = new Point3f(0.0f, 0.0f, -1.0f);

21. positions[1l] = new Point3f(1.0f, -1.0f, -2.0f);

22. positions[2] = new Point3f(-1.0f, 1.0f, -3.0f); J
23.

24. Rot PosPat hl nt er pol at or rot PosPat h = new Rot PosPat hl nt er pol at or (4]
25. al pha, target, axisOf RotPos, knots, quats, positions);
26. r ot PosPat h. set Schedul i ngBounds(new Boundi ngSphere());

27.

28. obj Root . addChi | d(t arget);

29. obj Root . addChi | d(r ot PosPat h) ; (6]
30. t arget . addChi | d(new Col or Cube(0. 4));

31.

32 return obj Root;

33: } // end of createSceneG aph net hod of Rot PosPat hApp
Code Fragment 5-2 An Excerpt from the CreateSceneGraph Method of RotPosPathApp.java.

The Java 3D Tutorial 5-21

Module 3: Interaction and Animation Chapter 5. Animation

Code Fragment 5-2 is based on the creasteSceneGraph method in Rot PosPat hApp.j ava. The
difference is in the number of knots shown in the code fragment and used in the example program.
Rot PosPat hApp. j ava defines nine knots while Code Fragment 5-2 only shows three. Figure 5-13
shows an image from RotPosPathApp. In the application, ared point is displayed for each of the nine knot
positions. One position is reused, thus the eight red dots in the figure.

E'-;_,% RotPozPathApp

Figure 5-13A Scene Rendered by RotPosPathApp Showing the Interpolation of the Rotation and
Position of the Color Cube. The Red Dots Show the Knots Positions of the Example Application.

When the RotPosPathApp example program is run, ColorCube moves from knot position to knot position
while rotating to achieve the various knot rotations. As with al interpolators, the resulting animation
depends on the combination of interpolator values and the Alpha parameters used.

As mentioned before, there are a variety of subclasses of the Pathinterpolator Class. In addition to these
subclasses in the Java 3D core, there are a couple of related classes in the utility package. The
TCBPathSplinelnterpolator Class is a class similar to Pathinterpolator. It has one subclass in the utility
package. Refer back to Figure 5-8 to see the relationships among the interpolator classes.

In the RotPosPathApp example, the animation does not appear natural mainly due to the combination of
knot positions chosen. The ColorCube moves to each knot position specified and as soon as that position is
reached, the motion suddenly changes to achieve the next position. This does not appear natural as this type
of action does not happen in the real world where al objects have some inertia.

TCBPathSplinelnterpolator is a utility class that provides behavior and functionality similar to that of the
Pathinterpolator Class, but smooths the path of the visual object into that of a spline based on the knot
position. The spline path mimics the real world motion of objects. On the spline motion path, the visua
object may not pass through al (or any) of the specified knot positions. An example program using this
class, Spl i neAni m j ava, is distributed with the Java 3D APl examples and can be found in the
j dk1. 2/ deno/ j ava3d/ Spl i neAni msubdirectory.

Pathl nter polator

Pathlnterpolator is an abstract class providing the basic interface and functionality of its subclasses.
Pathinterpolator objects store the knot values and calculates the index of knot values to be used based on the
current alpha value.

The Java 3D Tutorial 5-22

Module 3: Interaction and Animation Chapter 5. Animation

Pathlnter polator

extends: | nt er pol at or
Direct Known Subclasses: Posi t i onPat hl nt er pol at or, Rot ati onPat hl nt er pol at or,
Rot PosPat hl nt er pol at or, Rot PosScal ePat hl nt er pol at or

This abstract class defines the base class for all Path Interpolators. Subclasses have access to the method to compute
the currentinterpolationV aue given the current time and alpha. The method also computes the currentk notlndex,
which is based on the currentlnterpolationValue. The currentlnterpolationValueis calculated by linearly
interpolating among a series of predefined knots (using the value generated by the specified Alpha object).

The first knot must have a value of 0.0 and the last knot must have avalue of 1.0. An intermediate knot with index
k must have avalue strictly greater than any knot with index less than k.

Pathlnterpolator Method Summary (partial list)

i nt get ArraylLengt hs()
This method retrieves the length of the knots array.

voi d setKnot (i nt index, float knot)
This method sets the knot at the specified index for this interpolator.

RotPosPathlnter polator

A RotPosPathinterpolator object varies the rotation and position of a visual object based on a set of knot
values. The constructor is the most important of the API features of this class. In the constructor al of the
values and related objects are specified. Be aware that each of the arrays must be the same length in this
and all Pathinterpolator objects.

RotPosPathlnterpolator Constructor Summary
extends Pat hl nt er pol at or

RotPosPathinterpolator behavior. This class defines a behavior that modifies the rotational and translational
components of its target TransformGroup by linearly interpolating among a series of predefined knot/position and
knot/orientation pairs (using the value generated by the specified Alpha object). The interpolated position and
orientation are used to generate atransform in the local coordinate system of this interpolator.

Rot PosPat hl nt er pol at or (Al pha al pha, Transform& oup target,
Transforn8D axi sOf Rot Pos, float[] knots, Quat4f[] quats,
Poi nt 3f [] positions)
Constructs a new interpolator that varies the rotation and translation of the target TransformGroup's transform.

The Java 3D Tutorial 5-23

Module 3: Interaction and Animation Chapter 5. Animation

RotPosPathl nterpolator Method Summary

voi d set Axi sOF Rot Pos(Tr ansf or nBD axi sOf Rot Pos)
Sets the axis of RotPos value for this interpolator.

voi d setPosition(int index, Point3f position)
Sets the position at the specified index for this interpolator.

voi d setQuat (i nt index, Quat4f quat)
Sets the quaternion at the specified index for this interpolator.

voi d set Tar get (Transform& oup target)
Sets the target TransformGroup for this interpolator.

5.3 Billboard Class

The term "billboard" used in computer graphics context refers to the technique of automatically rotating a
planar visua object such that it is aways facing the viewer. The origina motivation for the billboard
behavior was to enable using a textured plane as alow cost replacement for complex geometry™. Billboard
behavior is still commonly used for this application, but is also used for other purposes, such as keeping
textual information visible from any angle in the virtua environment. In Java 3D, the billboard technique is
implemented in a subclass of the Behavior Class, thus the phrase "billboard behavior" used in Java 3D
literature.

The classic example application of the billboard behavior is to represent trees as 2D textures. Of course, if
the textures are statically oriented, as the viewer moves, the 2D nature of the texturesis revealed. However,
if the trees reorient themselves such that they are always viewed parallel to their surface normal, they appear
as 3D objects. Thisisespecidly trueif the trees are in the background of a scene or viewed at a distance.

5.3.1 Using aBillboard Object

The billboard behavior works for trees because trees look basically the same when viewed from the front,
from the back, or from any angle. Since the billboard behavior makes a visual object appear exactly the
same when viewed from any angle, it is appropriate to use hillboards and 2D images to represent 3D objects
that are geometrically symmetric about the y-axis such as cylindrical buildings, grain silos, water towers, or
any cylindrical object. Billboard behavior can aso be used for non-symmetric objects when viewed from
sufficient distance as to hide the details of the 2D model.

Using a billboard object is similar to using an interpolator except there is no Alpha object to drive the
animation. The animation of the Billboard object is driven by its relative position to the viewer in the virtua
world. Figure 5-14 shows the stepsin the Billboard usage recipe.

1. create atarget TransformGroup with ALLOW_TRANSFORM_WRITE capability
2. create a Billboard object referencing the target TransformGroup

3. supply a scheduling bounds (or bounding leaf) for the Billboard object

4. assemble the scene graph

Figure 5-14 Recipe for Using a Billboard Object to Provide Animation.

12nCost" here refers to rendering cost, or the computational cost of rendering.

The Java 3D Tutorial 5-24

Module 3: Interaction and Animation Chapter 5. Animation

Billboard Programming Pitfalls

Even though the usage of a Billboard object is straightforward, there are a couple of potential programming
mistakes. The first thing to realize it that the target TransformGroup is clobbered in each time it is updated.
Consequently, this TransformGroup can not be used to position the visua object. If you attempt to use the
target for placement, the billboard will work, but on the first update of rotation, the position information in
the target will be lost and the visual object will appear at the origin.

Without the ALLOW_TRANSFORM_WRITE capability set for the target, a runtime error will be the
result. Also, if the bounds is not set, or not set properly, the Billboard object will not animate the visual
object. The scheduling bounds is typically specified by BoundingSphere with a radius great enough to
enclose the visua object. Just like other behavior objects, leaving the Billboard object out of the scene
graph will diminate it from the virtual world without error or warning.

There is one problem with the Billboard Class that can not be overcome. In applications with more than one
view, each Billboard object will animate properly for only one of the views. Thisisalimitation in the design
of Java 3D and will be addressed in a subsequent version.

5.3.2 Example Billboard Program

The BillboardApp example program creates a virtual world with billboard behavior trees. Even though the
trees are crudely created (from atriangle fan) they do not appear as 2D objects in the background®.

There are two TransformGroup objects for each tree in this example. One TransformGroup, TGT, simply
trandates the tree into the position for the application. The TGT transform is not changed at runtime. The
second TransformGroup, TGR, provides the rotation for the tree. The TGR isthe target of Billboard. Code
Fragment 5-3 is annotated with the steps of the recipe from Figure 5-14.

1. public BranchG oup createSceneG aph(Si npl eUni verse su) {
2. BranchG oup obj Root = new BranchG oup();

3.

4. Vector3f translate = new Vector 3f();

5. TransfornBD T3D = new TransfornBD();

6. Transform& oup TGT = new Transf or mG oup();

7. Transform&aoup TGR = new TransformGoup(); ©
8. Bi |l board billboard = null;

9. Boundi ngSpher e bSphere = new Boundi ngSphere();
10.

11. transl ate. set (new Poi nt 3f (1. 0f, 1.0f, 0.0f));
12. T3D. set Transl ati on(transl ate);

13. TGT. set (T3D);

14.

15. /1 set up for billboard behavi or

16. TGR. set Capabi i ty(Transf or m& oup. ALLON TRANSFORM WRI TE) ; ©
17. bill board = new Bill board(TGR); @

18. bi | | boar d. set Schedul i ngBounds(bSphere); ©

19.

20. /1 assenbl e scene graph

21. obj Root . addChi | d(TGT) ;

22. obj Root . addChi I d(bi | | board); @

23. TGT. addChi | d(TGR) ;

24. TGR addChi |l d(createTree());

25.

13 Better trees could be created from transparent textures. Textures are covered in Chapter 7.

The Java 3D Tutorial 5-25

Module 3: Interaction and Animation Chapter 5. Animation

26. /1 add KeyNavi gat or Behavi or (vpTrans) code renoved,;
27.

28. return obj Root;

29. } /1 end of CreateSceneG aph nethod of Bill boardApp

Code Fragment 5-3 Except From the createSceneGraph Method of BillboardApp.java.
Figure 5-15 shows the scene graph diagram of the objects assembled in Code Fragment 5-3.

&9

r BoundingSphere

tree

Figure 5-15 Diagram of Scene Graph Using a Billboard Object as Created in Code Fragment 5-3.

Figure 5-16 shows an image rendered from the BillboardApp example program. Code Fragment 5-3 shows
the code for placing one Billboard animated tree in a virtua world. The BillboardApp program places
several trees on the virtual landscape which is why four trees are visible in Figure 5-16.

=3 BillboardApp

Figure 5-16 Image of BillboardApp with all 2D 'Trees Facing the Viewer.

The BillboardApp example program provides a KeyNavigatorBehavior so that the user can move around
and observe the trees from various positions and orientations. See Section 4.4.2, or all of Chapter 4, for
more information on the KeyNavigatorBehavior class.

The Java 3D Tutorial 5-26

Module 3: Interaction and Animation Chapter 5. Animation

5.3.3 Billboard API

The example shows using the default mode of the Billboard object, which is to rotate about an axis. In this
default mode, the visual object will be rotated about the y-axis only. So, if the trees in the BillboardApp
program are viewed from above or below, their 2D geometry would be revealed.

The alternative mode is to rotate about a point. In this mode, the rotation would be about a point such that
the visual object is always viewed orthogonaly from any viewing position. In other words, it will never be
obvious that the visual object is two dimensional. One possible application is to represent the moon, or
other distant spherical objectsasacircle. Spherical objects appear as a circle when viewed from any angle.

More information on the two modes of the Billboard accompanies the summaries of constructors and
methods in the next two reference blocks.

Billboard Constructor Summary
extends: Behavi or

The Billboard behavior node operates on the TransformGroup node to cause the local +z axis of the
TransformGroup to point at the viewer's eye position. Thisis done regardless of the transforms above the specified
TransformGroup node in the scene graph. Billboard nodes provide the most benefit for complex, roughly-
symmetric objects. A typical use might consist of a quadrilateral textured with the image of atree.

Bi | | board()
Constructs a Billboard node with default parameters: mode = ROTATE_ABCQUT_AXI S, axis=(0, 1, 0) .

Bi | | boar d(Tr ansf or n3r oup t g)
Constructs a Billboard node with default parameters that operates on the specified TransformGroup node.

Bi | | board(Transform&oup tg, int node, Vector3f axis)
Constructs a Billboard node with the specified axis and mode that operates on the specified TransformGroup node.
Seeset Mbde() method for an explanation of the mode parameter.

Bi | | board(Transformaoup tg, int node, Point3f point)

Constructs a Billboard node with the specified rotation point and mode that operates on the specified
TransformGroup node. See set Mbde() method for an explanation of the mode parameter.

The Java 3D Tutorial 5-27

Module 3: Interaction and Animation Chapter 5. Animation

Billboard Method Summary (partial list)

voi d set Al'i gnnment Axi s(Vect or 3f axi s)
Sets the alignment axis.

voi d set Ali gnment Axi s(float x, float y, float 2z)
Sets the alignment axis.

voi d set Al'i gnnment Mbde(i nt node)
Sets the alignment mode, where mode is one of
ROTATE_ABOUT_AXI S - Specifies that rotation should be about the specified axis.
ROTATE_ABOUT_PO NT - Specifiesthat rotation should be about the specified point and that the
children's Y -axis should match the view object's Y -axis.

voi d set Rot ati onPoi nt (Poi nt 3f poi nt)
Sets the rotation point.

voi d setRotationPoint(float x, float y, float 2z)
Sets the rotate point.

voi d set Target (Transf or m& oup t Q)
Sets the target TransformGroup object for this Billboard object.

5.4 Leve of Detail (LOD) Animations

Level of Detail (LOD) is a general term for a technique that varies the amount of detail in a visual object
based on some value from the virtual world. The typical application isto vary the level of detail based on
the distance to the viewer. As the distance to a visual object increases, the fewer details will appear in the
rendering. So, reducing the complexity of the visua object may not affect the visua result. However,
decreasing the amount of detail in the visua object when it is far from the viewer reduces the amount of
rendering computation. If it is done well, a significant computational savings can be made without visua
loss of content.

The DistancelL OD Class provides LOD behavior based on distance to the viewer. Other possible LOD
applications include varying the level of detail based on the rendering speed (frames per second) in hopes of
maintaining a minimum frame rate, the speed of the visual object, or the level of detail could be controlled
by user settings.

Each LOD object has one or more Switch objects as a target. As mentioned before, a Switch object is a
special group that includes zero, one, or more, of its children in the scene graph for rendering (see "Switch"
on page 5-18 for more information). With a DistanceLOD object, the selection of the child of the target
Switch object is controlled by the distance of the Distancel. OD object to the view based on a set of threshold
distances.

The threshold distances are specified in an array beginning with the maximum distance the first child of the
switch target(s) will be used. The first child is typically the most detailed visual object. When the distance
from the DistancelL OD object to the view is greater than this first threshold, the second child of the switch is
used. Each subsequent distance threshold must be greater than the previous and specifies the distance at
which the next child of the target switch is used. Thus, there are one fewer threshold distances than there
are children of the switch target(s).

The Java 3D Tutorial 5-28

Module 3: Interaction and Animation Chapter 5. Animation

If more than one Switch is added as a target of the LOD object, then each Switch target is used in paralldl.
That is, the child of the same index is selected simultaneously for each of the Switch targets. In thisway, a
complex visua object can be represented by multiple geometric objects which are children of different
switch nodes.

5.4.1 Using a Distancel OD Object

Using a DistancelL OD object is similar to using an interpolator except there is no Alpha object to drive the
animation. The animation of the LOD object is driven by its relative distance to the view in the virtua
world; in this way using a DistanceLOD object is very similar to using a Billboard object. Using a
Distancel. OD object also requires setting the threshold distances. Figure 5-17 shows the steps in the LOD
usage recipe.

1. create atarget Switch object(s) with ALLOW_SWITCH_WRITE capability
2. create list of distance thresholds array for the Distancel OD object

3. create Distancel OD object using the distance thresholds array

4. st the target switch object for the Distancel OD object

5. supply a scheduling bounds (or bounding leaf) for the Distancel. OD object

6. assemble the scene graph, including adding children to target Switch object(s)

Figure 5-17 Recipe for Using a Distancel. OD Object to Provide Animation.

LOD Programming Pitfalls

Even thought the usage of a LOD object is straightforward, there are a couple of potential programming
mistakes. The most common mistake is to fail to include the target switch object(s) in the scene graph.
Setting the switch object(s) as the target(s) of the Distancel OD object does not automatically include them
in the scene graph.

Without the ALLOW_SWITCH_WRITE capahility set for the target switch object(s), a runtime error will
result. Also, if the boundsis not set, or not set properly, the LOD object will not animate the visual object.
The scheduling bounds is typically specified by a BoundingSphere with a radius great enough to enclose the
visual object. Just like other behavior objects, leaving the Billboard object out of the scene graph will
eliminate it from the virtual world without error or warning.

There is one problem with the LOD classes that can not be overcome. Just like with Billboard applications,
in applications that have more than one view, the LOD object will only animate properly for one of the
views.

5.4.2 Example Usage of DistancelL OD

Code Fragment 5-4 shows an excerpt from the creasteSceneGraph method in the DistanceL ODApp. The
program can be found in the exanpl es/ Ani nmat i on subdirectory in the examples jar distribution as
Di st anceLODApp. j ava. The code of Code Fragment 5-4 is annotated with the steps from the recipe
of Figure 5-17.

The Java 3D Tutorial 5-29

Module 3: Interaction and Animation Chapter 5. Animation

1. public BranchG oup createSceneG aph() {

2. BranchG oup obj Root = new BranchG oup();

3. Boundi ngSpher e bounds = new Boundi ngSphere();

4.

5. /1 create target TransformG oup with Capabilities

6. Transf or mM& oup obj Move = new Transf or nG oup() ;

7.

8. /1 create Di stancelLOD target object O

9. Switch targetSwitch = new Switch();

10. target Switch. set Capability(Swi tch. ALLON SW TCH WRI TE) ;

11.

12. /! add visual objects to the target switch ®

13. target Swi t ch. addChi | d(new Sphere(. 40f, 0, 25));

14. target Swi t ch. addChi | d(new Sphere(. 40f, 0, 15));

15. target Swi t ch. addChi | d(new Sphere(. 40f, 0, 10));

16. target Swi t ch. addChi | d(new Sphere(.40f, 0, 4));

17.

18. /1 create Di stanceLOD obj ect

19. float[] distances = { 5.0f, 10.0f, 20.0f}; ®

20. Di stanceLOD dLOD = new Di st anceLOD(di st ances, new Point3f()); ©
21. dLOD. addSwi t ch(t arget Swi tch); 4]

22. dLOD. set Schedul i ngBounds(bounds); ©

23.

24. /| assenbl e scene graph O

25. obj Root . addChi | d(obj Move) ;

26. obj Move. addChi | d(dLOD) ; /1 make the bounds nmove w th object
27. obj Move. addChi l d(targetSwitch); // nust add switch to scene graph
28.

29. return obj Root;

30. } // end of CreateSceneG aph nethod of Di stanceLODApp

Code Fragment 5-4 Excer pt from createSceneGraph Method in Distancel ODApp.

Figure 5-18 shows the scene graph diagram for the scene graph created in Code Fragment 5-4. Note that the
target Switch object is both a child of a TransformGroup object and referenced by the Distancel OD object.
Both relationships are required.

&9

BoundingSphere

Spherel

Spherel Sphere? Sphere3

Figure 5-18 Partial Scene Graph Diagram for DistanceL ODApp Example Program.

The Java 3D Tutorial 5-30

Module 3: Interaction and Animation Chapter 5. Animation

Figure 5-19 shows two scenes rendered by DistanceL ODApp. Each scene has two static spheres and one
sphere that moves. (In the right scene, the leftmost sphere is occluded.) The moving sphere is represented
by a DistanceL OD object with four spheres of varying geometric complexity. The small green sphere is the
most detailed sphere used by the Distancel OD object at the maximum distance. The large red sphereis the
least detailed sphere of the DistanceLOD object at the minimum distance. The two static spheres are
included for comparison purposes.

In this application the DistanceLOD object is represented by different color spheres to illustrate the
switching. Normally each visual object used by aLOD object would look as much alike as appropriate.

A Positioninterpolator is used to move the DistanceLOD object forward and back in the scene. As the
Distancel OD object moves further from the view, it switches visual objects. Without the color change in
this application, it would not be easy to tell when the switching occurs.

f=5 DistanceL ODApp =1 2 23 DistanceLDDApp _[O]]

Figure 5-19 Two Scenes Rendered from Distancel. ODApp.

In practice, you typically need to experiment with the threshold distances and various representations to
achieve the desired visua and computational results.

5.4.3 DistanceLOD API

In Java 3D, the LOD Class provides the basic functionality for all LOD applications. The DistanceLOD
Class extends the LOD Class to add the 'switch on distance to viewer' computations. Several methods of the
LOD Class are necessary in the use of a DistanceLOD object. The API for the LOD Class is presented
following the DistanceL OD reference blocks.

The Java 3D Tutorial 5-31

Module 3: Interaction and Animation Chapter 5. Animation

Distancel. OD Constructor Summary

This class defines a distance-based LOD behavior node that operates on a Switch group node to select one of the
children of that Switch node based on the distance of this LOD node from the viewer. An array of h monotonically
increasing distance values is specified, such that distances[0] is associated with the highest level of detail and
distanceqn-1] is associated with the lowest level of detail. Based on the actual distance from the viewer to this
Distancel OD node, these n distance values [0, n-1] select from among n+1 levels of detail [0, n]. If d is the distance
from the viewer to the LOD node, then the equation for determining which level of detail (child of the Switch node)
is selected is:

0, if d <= distances[0]

i, if distanceq[i-1] < d <= distanced[i]

n, if d > distances[n-1]

Note that both the position and the array of distances are specified in the local coordinate system of this node.

Di st ancelLOX()
Constructs and initializes a Distancel OD node with default values.

Di stanceLOD(fl oat[] di stances)
Constructs and initializes a Distancel OD node with the specified array of distances and a default position of (0,0,0).

Di stanceLOD(fl oat[] distances, Point3f position)
Constructs and initializes a Distancel OD node with the specified array of distances and the specified position.

Distancel OD Method Summary

i nt nunDi st ances()
Returns a count of the number of LOD distance cut-off parameters.

voi d set Di stance(i nt whi chDi stance, doubl e di stance)
Sets a particular LOD cut-off distance.

voi d set Posi ti on(Poi nt 3f position)
Sets the position of this LOD node.

54.4 LOD (Leve of Detail) AP

As an abstract class, the LOD Class is not directly used in Java 3D programs. Methods of the LOD Class
are used to manage the target Switch object(s) of a DistanceLOD object. Also, other LOD applications
could be created by extending this class as appropriate.

LOD Constructor Summary

An LOD leaf nodeis an abstract behavior class that operates on alist of Switch group nodes to select one of the
children of the Switch nodes. The LOD class is extended to implement various selection criteria.

LOX()

Constructs and initializes an LOD node.

The Java 3D Tutorid 5-32

Module 3: Interaction and Animation Chapter 5. Animation

LOD Method Summary

voi d addSwi t ch(Switch sw t chNode)
Appends the specified switch node to this LOD's list of switches.

java. util.Enurmeration getAl |l Sw tches()
Returns the enumeration object of all switches.

void insertSwitch(Swi tch switchNode, int index)
Inserts the specified switch node at specified index.

i nt numBwi t ches()
Returns a count of this LOD's switches.

voi d removeSwi t ch(int index)
Removes the switch node at specified index.

voi d setSwitch(Swi tch switchNode, int index)
Replaces the specified switch node with the switch node provided.

5.5 Morph

Interpolator classes change various visua attributes in the virtual world. However, there is no interpolator
to change the geometry of a visua object. This is exactly what the Morph Class does. A Morph object
creates the geometry for a visual object through interpolating from a set of GeometryArray objects®. In this
way the Morph Class is like the interpolator classes. But, Morph is not an interpolator; it isn't even an
extension of the Behavior class. The Morph Class extends Node.

Chapter 4 explains that al changes to a live scene graph or the objects in a live scene graph are normally
made through the processStimulus method of Behavior objects. Since there is no specific behavior class for
use with a Morph object, a custom behavior class must be written for a Morph application. Whether the
Morph classis considered an animation or interaction class depends on the stimulus for the behavior driving
the Morph object. Before getting into the details of using the Morph class, a little discussion of Morph
applicationsisin order.

Morph objects can be used to turn pyramids into cubes, cats into dogs, or change any geometry into any
other geometry. The only limitation is that the geometry objects used for interpolation are the same class,
each a subclass of GeometryArray, with the same number of vertices. The restriction on the number of
vertices is not as limiting as it first seems. An example program that changes a pyramid into a cube,
Pyram d2Cube. j ava, isdistributed with the Java 3D API.

Morph objects can also be used to animate a visual object (e.g., to make a person walk, or to make a hand
grasp). An example program that animates a hand, Mor phi ng. j ava, is aso distributed with the Java
3D APl examples. A third Morph example which makes a stick figure walk is the subject of the next
section.

4 The GeometryArray Class and related classes are covered in Chapter 2.

The Java 3D Tutorial 5-33

Module 3: Interaction and Animation Chapter 5. Animation

5.5.1 Using a Morph Object

To understand the usage of the Morph object requires knowing how the Morph object functions.
Fortunately, a Morph object is not very complex. A Morph object stores an array of GeometryArray
objects. You may recal from Chapter 2 that GeometryArray is the superclass of TriangleArray,
QuadStripArray, IndexedLineStripArray, and TriangleFanArray (just to name afew).

The individual GeometryArray objects each completely defines one complete geometric specification for the
visual object including color, normals, and texture coordinates. The GeometryArray objects can be thought
of as key frames in an animation, or more properly, as constants in an equation to creste a new
GeometryArray object.

In addition to the array of GeometryArray objects, a Morph object has an array of weight values — these are
the variables in the equation. Using the GeometryArray objects and the weights, a Morph object constructs
a new geometry array object using the weighted average of the coordinate, color, normals, and texture
coordinate information from the GeometryArray objects. Changing the weights changes the resulting
geometry.

All that is required to use a Morph object is to create the array of GeometryArray objects and set the
weighting values. Figure 5-17 summarizes the steps to use a Morph object.

1. create an array of GeometryArray objects
2. create aMorph abject with ALLOW_WEIGHTS WRITE
3. assemble the scene graph, including adding children to target Switch object(s)

Figure 5-20 Recipe for Using a Morph Object.

As you can see, using a morph object is not hard; however, these steps provide neither animation nor
interaction. Animation or interaction is provided through a behavior object. Consequently, using a Morph
object usually means writing a behavior class. Writing a custom Behavior Class is covered in Section
4.2.1., so the general details of this task are not covered here. Of course, a Morph object can be used
without a behavior, but then it would not be animated. Section 5.5.2 presents a simple morph behavior class
useful in creating key frame animations.

A Morph object can refer to an appearance bundle. The appearance bundle is used with the GeometryArray
object created by the Morph object. Be aware that the Morph object always makes a GeometryArray object
with per-vertex-colors. As a consequence, a ColoringAttributes color and Materia diffuse color
specifications are ignored. See Chapter 6 for more information on coloring and shading of visua objects.

Morph Programming Pitfalls

Even as simple as Morph usage is, there is an associated potential programming pitfall (not yet mentioned).
Weights that do not sum to 1.0 results in a runtime error. | have aready mentioned the appearance
limitation.

5.5.2 Example Morph Application: Walking

This Morph application uses a custom behavior object to provide animation. The first step in this
development is to write the custom behavior.

In a behavior used to animate a Morph object, the processStimulus method changes the weights of the
Morph object. This processis only as complex as necessary to achieve the desired animation or interaction
effect. In this program, The processStimulus method sets the weights values based on the apha value from
an aphaobject. This happens on each frame of rendering where the trigger condition has been satisfied.

The Java 3D Tutorial 5-34

Module 3: Interaction and Animation Chapter 5. Animation

Code Fragment 5-5 shows the code for the custom behavior of the MorphApp program. In this code, only
the processStimulus method is interesting.

1. public class MrphBehavi or extends Behavi or{

2.

3. private Morph targetMrph;

4. private Al pha al pha;

5. /1 the follow ng two nenbers are here for efficiency

6. private double[] weights = {0, 0, 0, 0};

7. private WakeupCondition trigger = new WakeupOnEl apsedFranes(0);

8.

9. /1 create MorphBehavi or

10. Mor phBehavi or (Mor ph t ar get Mor ph, Al pha al pha) {

11. thi s.target Morph = target Mr ph;

12. thi s. al pha = al pha;

13. }

14.

15. public void initialize(){

16. /1 set initial wakeup condition

17. t hi s. wakeupOn(trigger);

18. }

19.

20. public void processStinmulus(Enuneration criteria){

21. /1 don't need to decode event since there is only one trigger
22. wei ghts[0] = 0; weights[1] = 0; weights[2] = 0; weights[3] = 0;
23.

24. fl oat al phaval ue = 4f * al pha. val ue(); /1 get al pha

25. i nt al phal ndex = (int) al phaval ue; /1 which Geom obj
26. wei ght s[al phal ndex] = (doubl e) al phaVal ue - (doubl e)al phal ndex;
27. i f(al phal ndex < 3) /1 which other obj
28. wei ght s[al phal ndex + 1] = 1.0 - wei ght s[al phal ndex];

29. el se

30. wei ghts[0] = 1.0 - weights[al phal ndex];

31.

32. t ar get Mor ph. set Wi ght s(wei ght s) ;

33.

34. t hi s. wakeupOn(tri gger); /1 set next wakeup condition
35. }

36. } // end of class MorphBehavi or

Code Fragment 5-5 MorphBehavior Classfrom MorphApp.

The MorphBehavior class does a key frame animation using the GeometryArray objects two at atimein a
cyclical pattern. This class is suitable for any morph animation of four key frames and can be easly
changed to accommodate other numbers of key frames.

With the custom behavior written, al that remains is to develop the key frames for the animation. Figure
5-21 shows the hand drawings used as the key frames for this example application. Better key frames could
have been made using some 3D package.

The Java 3D Tutorial 5-35

Module 3: Interaction and Animation Chapter 5. Animation

frame0 framel frame3 frame0 (repeated)

Figure 5-21 Key Frame Images from MorphApp with the Trace of One Vertex.

The black figures may look like two key frames, each repeated once, but in actuality, they are four unique
key frames. The differenceisin the order the vertices are specified.

Code Fragment 5-6 shows and excerpt from the createSceneGraph method of Mor phApp. j ava annotated
with the steps of the recipe in Figure 5-20. In this method, a MorphBehavior object, Alpha object, and a
Morph object are created and assembled into the scene graph. The key frame GeometryArray objects are
created using some other methods (not shown here). The complete code is distributed in the examplesjar.

1. public BranchG oup createSceneG aph() {

2. /1l Create the root of the branch graph

3. BranchG oup obj Root = new BranchG oup();

4.

5. TransfornBD t3d = new TransfornBD();

6. t 3d. set (new Vect or 3f (Of, -0.5f, 0f));

7. Transform& oup transl ate = new Transfor m& oup(t 3d);
8.

9. /1 create CeonetryArray[] (array of CeonetryArray objects) ©
10. CeonetryArray[] geomArray = new CeonetryArray[4];

11. geomArray[0] = createCGeomArray0();

12. geomArray[1] = createCGeomArrayl();

13. geomArray[2] = createCGeomArray2();

14. geomArray[3] = createCGeomArray3();

15.

16. /1 create norph object @

17. Mor ph mor phQoj = new Mor ph(geomArray) ;

18. nmor phQbj . set Capabi | i t y(Mor ph. ALLOW WEI GHTS_WRI TE) ;

19.

20. /1 create al pha object

21. Al pha al pha = new Al pha(-1, 2000); /1 continuous 2 sec. period
22. al pha. set I ncr easi ngAl phaRanpDur ati on(100) ;

23.

24. /1 create norph driving behavior

25. Mor phBehavi or nor phBehav = new Mr phBehavi or (mor phQoj, al pha);
26. nmor phBehav. set Schedul i ngBounds(new Boundi ngSphere());
27.

28. // assenbl e scene graph ©

29. obj Root . addChi | d(transl ate);

30. transl at e. addChi | d(nor phQbj) ;

31. obj Root . addChi | d(nor phBehav) ;

32.

33. return obj Root;

34. } // end of CreateSceneG aph nethod of MorphApp

Code Fragment 5-6 An Excerpt from the createSceneGraph Method of MorphApp.

It is interesting to note that a variety of animations are possible using the key frames created for this
example application with different behavior classes. Figure 5-22 shows a scene rendered by Morph3App.

The Java 3D Tutorial 5-36

Module 3: Interaction and Animation Chapter 5. Animation

In this program, three other behavior classes create animations based on some, or al, of the GeometryArray
objects of MorphApp. They are called (I€eft to right in the figure) "In Place”, "Tango", and "Broken". Not
all of the animations are good. Of coursg, to truly appreciate the animations, you have to run the program.
The source isincluded in the examples jar.

E'-;_,% Hulph?.ﬁpp'

Figure 5-22 A Scene Rendered from Morph3App Showing the Animations of Three Alternative
Behavior Classes (not all are good).

5.5.3 Morph API

With the simplicity of the usage recipe (Figure 5-20), you would expect a relatively smple APl —and it is.
The APl is summarized in the next three reference blocks.

Morph Constructor Summary
extends: Node

Morph objects create a new GeometryArray object using the weighted average of the GeometryArray objects. If an
appearance object is provided, it is used with the resulting geometry. The weights are specified with the

set Wi ght s method. A Morph object is usually used with a custom behavior object to adjust the weights at
runtime to provide animation (or interaction).

Mor ph(Geonet ryArray[] geonetryArrays)
Constructs and initializes a Morph object with the specified array of GeometryArray objects and a null Appearance
object.

Mor ph(Geonet ryArray[] geonetryArrays, Appearance appearance)
Constructs and initializes a Morph object with the specified array of GeometryArray objects and the specified
appearance object.

The Java 3D Tutorial 5-37

Module 3: Interaction and Animation Chapter 5. Animation

Morph Method Summary (partial list)

voi d set Appear ance(Appear ance appear ance)
Sets the appearance component of this Morph node.

voi d set Geonet ryArrays(CeonetryArray[] geonetryArrays)
Sets the geometryArrays component of the Morph node.

voi d set Wi ght s(doubl e[] wei ghts)
Sets this Morph node's morph weight vector.

Morph Capabilities Summary

ALLOW APPEARANCE _READ | WRI TE
Specifies that the node allows read/write access to its appearance information.

ALLOW GEOVETRY_ARRAY_READ | WRI TE
Specifies that the node allows read/write access to its geometry information.

ALLOW VEI GHTS_READ | WRI TE
Specifies that the node allows read/write access to its morph weight vector.

5.6 Chapter Summary

After Section 5.1 introduces animations in Java 3D, Section 5.2 explains the application of interpolator
classes with an Alpha object to add time based animations to a Java 3D virtual world. This section explains
many of the various interpolator classes in detail. Sections 5.3 and 5.4 explain the Billboard and
Distancel OD classes, respectively, which are useful in creating animations for the purpose of reducing the
rendering cost of visual objects. In Section 5.5 the Morph classis introduced. That section also presents a
complete example using a Morph object to create a key frame animation.

5.7 Sdf Test

1. The InterpolatorApp example program uses six different interpolator objects. Each of the interpolator
objects refers to the same Alpha object. The result is to coordinate all the interpolators. What would be the
result if each interpolator object had its own Alpha object? How could you change the timing?

2. If the light in InterpolatorApp is changed to Vect or 3f (- 0. 7f, - 0. 7f, 0. Of) what happens?
Why?

3. Why are there fewer distances than visual objects specified for a DistanceL OD object?

4. In MorphApp there are four frames of which two look like duplicates of the other two. Why are four
frames necessary? Asked another way, what would the animation look like with just two frames?

5. In using a morph object, the same number of vertices are used. How can you accommodate geometric
models of differing numbers of vertices?

The Java 3D Tutorial 5-38

	Chapter 5: Animation
	Cover
	Table of Contents
	List of Figures
	List of Code Fragments
	List of Tables
	List of Reference Blocks
	Preface to Chapter 5
	5.1 Animations
	5.2 Interpolators and Alpha Objects Provide Time-based Animations
	5.2.1 Alpha
	5.2.2 Using Interpolator and Alpha Objects
	5.2.3 Example Using Alpha and RotationInterpolator
	Smoothing of the Alpha Waveform

	5.2.4 Alpha API
	5.2.5 Interpolator Behavior Classes
	Interpolator Programming Pitfalls

	5.2.6 Core Interpolator API
	ColorInterpolator
	PositionInterpolator
	RotationInterpolator
	ScaleInterpolator
	SwitchValueInterpolator
	Switch
	TransparencyInterpolator

	5.2.7 PathInterpolator Classes
	PathInterpolator Example Application
	PathInterpolator
	RotPosPathIntepolator

	5.3 Billboard Class
	5.3.1 Using a Billboard Object
	Billboard Progamming Pitfalls

	5.3.2 Example Billboard Program
	5.3.3 Billboard API

	5.4 Level of Detail (LOD) Animations
	5.4.1 Using a DistanceLOD Object
	LOD Progamming Pitfalls

	5.4.2 Example Usage of DistanceLOD
	5.4.3 DistanceLOD API
	5.4.4 LOD (Level of Detail) API

	5.5. Morph
	5.5.1 Using a Morph Object
	Morph Programming Pitfalls

	5.5.2 Example Morph Application: Walking
	5.5.3 Morph API

	5.6 Chapter Summary
	5.7 Self Test

	Chapter 0: Introduction, Overview and Appendicies
	Chapter 1: Getting Started
	Chapter 2: Creating Geometry
	Chapter 3: Easier Content Creation
	Chapter 4: Interaction
	Chapter 6: Lighting
	Chapter 7: Textures
	Appendix A
	Appendix B
	Appendix C
	Glossary

