#include #include #include #include "sha256.h" const uint32_t sha256K[] PROGMEM = { 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5, 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174, 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da, 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967, 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85, 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070, 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3, 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 }; #define BUFFER_SIZE 64 const uint8_t sha256InitState[] PROGMEM = { 0x67,0xe6,0x09,0x6a, // H0 0x85,0xae,0x67,0xbb, // H1 0x72,0xf3,0x6e,0x3c, // H2 0x3a,0xf5,0x4f,0xa5, // H3 0x7f,0x52,0x0e,0x51, // H4 0x8c,0x68,0x05,0x9b, // H5 0xab,0xd9,0x83,0x1f, // H6 0x19,0xcd,0xe0,0x5b // H7 }; void Sha256Class::init(void) { memcpy_P(state.b,sha256InitState,32); byteCount = 0; bufferOffset = 0; } uint32_t Sha256Class::ror32(uint32_t number, uint8_t bits) { return ((number << (32-bits)) | (number >> bits)); } void Sha256Class::hashBlock() { uint8_t i; uint32_t a,b,c,d,e,f,g,h,t1,t2; a=state.w[0]; b=state.w[1]; c=state.w[2]; d=state.w[3]; e=state.w[4]; f=state.w[5]; g=state.w[6]; h=state.w[7]; for (i=0; i<64; i++) { if (i>=16) { t1 = buffer.w[i&15] + buffer.w[(i-7)&15]; t2 = buffer.w[(i-2)&15]; t1 += ror32(t2,17) ^ ror32(t2,19) ^ (t2>>10); t2 = buffer.w[(i-15)&15]; t1 += ror32(t2,7) ^ ror32(t2,18) ^ (t2>>3); buffer.w[i&15] = t1; } t1 = h; t1 += ror32(e,6) ^ ror32(e,11) ^ ror32(e,25); // ∑1(e) t1 += g ^ (e & (g ^ f)); // Ch(e,f,g) t1 += pgm_read_dword(sha256K+i); // Ki t1 += buffer.w[i&15]; // Wi t2 = ror32(a,2) ^ ror32(a,13) ^ ror32(a,22); // ∑0(a) t2 += ((b & c) | (a & (b | c))); // Maj(a,b,c) h=g; g=f; f=e; e=d+t1; d=c; c=b; b=a; a=t1+t2; } state.w[0] += a; state.w[1] += b; state.w[2] += c; state.w[3] += d; state.w[4] += e; state.w[5] += f; state.w[6] += g; state.w[7] += h; } void Sha256Class::addUncounted(uint8_t data) { buffer.b[bufferOffset ^ 3] = data; bufferOffset++; if (bufferOffset == BUFFER_SIZE) { hashBlock(); bufferOffset = 0; } } __WRITE_RESULT Sha256Class::write(uint8_t data) { ++byteCount; addUncounted(data); __WRITE_RETURN(1); } void Sha256Class::pad() { // Implement SHA-256 padding (fips180-2 §5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block addUncounted(0x80); while (bufferOffset != 56) addUncounted(0x00); // Append length in the last 8 bytes addUncounted(0); // We're only using 32 bit lengths addUncounted(0); // But SHA-1 supports 64 bit lengths addUncounted(0); // So zero pad the top bits addUncounted(byteCount >> 29); // Shifting to multiply by 8 addUncounted(byteCount >> 21); // as SHA-1 supports bitstreams as well as addUncounted(byteCount >> 13); // byte. addUncounted(byteCount >> 5); addUncounted(byteCount << 3); } uint8_t* Sha256Class::result(void) { // Pad to complete the last block pad(); // Swap byte order back for (int i=0; i<8; i++) { uint32_t a,b; a=state.w[i]; b=a<<24; b|=(a<<8) & 0x00ff0000; b|=(a>>8) & 0x0000ff00; b|=a>>24; state.w[i]=b; } // Return pointer to hash (20 characters) return state.b; } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c uint8_t keyBuffer[BLOCK_LENGTH]; // K0 in FIPS-198a uint8_t innerHash[HASH_LENGTH]; void Sha256Class::initHmac(const uint8_t* key, int keyLength) { uint8_t i; memset(keyBuffer,0,BLOCK_LENGTH); if (keyLength > BLOCK_LENGTH) { // Hash long keys init(); for (;keyLength--;) write(*key++); memcpy(keyBuffer,result(),HASH_LENGTH); } else { // Block length keys are used as is memcpy(keyBuffer,key,keyLength); } // Start inner hash init(); for (i=0; i