ilm=read.table("http://www.tlu.ee/~jaagup/andmed/ilm/harkutund.txt", sep=",", header=TRUE)
cor(ilm[, 6:11], use="pairwise.complete.obs")
##              TA1H        TAN1H       TAX1H         WD1H        WS1H
## TA1H   1.00000000  0.999268054  0.99923768  0.038867966 -0.05038758
## TAN1H  0.99926805  1.000000000  0.99731633  0.037846512 -0.04418215
## TAX1H  0.99923768  0.997316329  1.00000000  0.040665950 -0.05572394
## WD1H   0.03886797  0.037846512  0.04066595  1.000000000 -0.07321849
## WS1H  -0.05038758 -0.044182155 -0.05572394 -0.073218488  1.00000000
## WSX1H -0.01130242 -0.006448119 -0.01528954  0.009591099  0.96252438
##              WSX1H
## TA1H  -0.011302425
## TAN1H -0.006448119
## TAX1H -0.015289541
## WD1H   0.009591099
## WS1H   0.962524382
## WSX1H  1.000000000
dist(cor(ilm[, 6:11], use="pairwise.complete.obs"))
##              TA1H       TAN1H       TAX1H        WD1H        WS1H
## TAN1H 0.008238814                                                
## TAX1H 0.007251073 0.015288488                                    
## WD1H  1.921379327 1.920970409 1.919495004                        
## WS1H  2.317166919 2.311394957 2.320480144 1.798795139            
## WSX1H 2.261203989 2.255383647 2.264543083 1.744188342 0.119384752
hclust(dist(cor(ilm[, 6:11], use="pairwise.complete.obs")))
## 
## Call:
## hclust(d = dist(cor(ilm[, 6:11], use = "pairwise.complete.obs")))
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 6
plot(hclust(dist(cor(ilm[, 6:11], use="pairwise.complete.obs"))))