
Programming XML with C#

Programming XML with C# is a book written in step-by-step tutorial format for

beginners and students who want to learn XML programming using C# language. It is

recommended that you have some programming experience using any of the object-

oriented languages such as C++, Pascal, or Java. It is also recommended that you are

familiar with C# language syntaxes and programming. If you are not a C# programmer, I

recommend to read Programming C# for Beginners before this book. This book can be

found in C# Programming section of C# Corner.

In this book, you will learn the basic elements of XML and classes and objects available

in .NET Framework to work with XML. After that, you will learn how to read, write,

updated, and transform XML using C#. .NET also provides support for relationships

between data (via ADO.NET) and XML. In this chapter, I also discuss how you can take

advantages of classes found on ADO.NET and connect data with XML.

http://www.c-sharpcorner.com/UploadFile/mahesh/csp08202007084545AM/csp.aspx

Table of Contents

1. Introduction to XML

2. DOM Overview

3. XML Representation in .NET World

4. The XML.NET Architecture

5. Reading XML

6. Writing XML

7. Understanding DOM Implementation

8. Transformation and XSLT

9. Connecting data and XML via ADO.NET

10. Traversing XML Documents

11. XML Designer in Visual Studio .NET

Introduction to XML

Note: If you are familiar with HTML and XML, you may skip this section and jump to XML
Representation in .NET World section.

The ADO.NET and XML.NET Framework Application Programming Interface (API) combination
provides a unified way to work with XML in the Microsoft .NET Framework. There are two ways to
represent data using XML: in a tagged-text format metalanguage similar to HTML and in a
relational table format. You use ADO .NET to access relational table formats. You would use
DOM to access the text format.

Before talking about the role of XML in the .NET Framework and how to work with it, it‟s important
you understand the basic building blocks of XML and its related terminology. You‟ll learn the
basic definitions of Standard Generalized Markup Language (SGML) and HTML in the following
sections. If you‟re already familiar with these languages, you can skip to the “XML Overview”
section.

Standard Generalized markup Language (SGML)

In 1986, Standard Generalized Markup Language (SGML) because the international standards
for representing electronic documents in a unified way. SGML provides a standard format for
designing your own markup schemes. Markup is a way to represent some information about
data.

Later Hypertext Markup Language (HTML) became the international standard for representing
documents on the Web in a unified way.

Hyper text Markup Language (HTML)

The HTML file format is text format that contains, rather heavily. Markup tags. A tag is a section

of a program that starts with < and ends with > such as <name>. (An element consists of a pair of

tags, starting with <name> and ending with </name>). The language defines all of the markup

tags. All browsers support HTML tags, which tell a browser how to display the text of an HTML
document. You can create an HTML file using a simple text editor such as Notepad. After typing

text in a text editor, you save the file with an.htm or .html extension.

NOTE: An HTML document is also called HTML pages or HTML file.

Listing 6-1 shows an example of an HTML file, type the following in a text editor, and save it

myfile.htm.

Listing 6-1. A simple HTML file

<html>

<head>

<title> A Test HTML Page </title>

</head>

<body>

Here is the body part.

</body>

</html>

If you view this field in a browser, you‟ll see the text Here is the body part. In Listing 6-1, your

HTML file starts with the <html> tag and ends with the </html> tag. The <html> tag tells a

browser that this is the starting point of an HTML document. The </html> tag tells a browser that
this is the ending point of an HTML documents. These tags are required in all HTML documents.

The <head> tag is header information of a document and is not displayed in the browser. The

<body> and</body> tags, which are required, makeup the main content of a document. As you

can see, all tags ends with a<\> tag.

NOTE: HTML tags are not case sensitive. However, the World Wide Web Consortium (W3C)
recommends using lowercase tags in HTML4. The next generation of HTML, XHTML, doesn‟t
support uppercase tags. (The W3C promotes the web worldwide and makes it more it more
useful. You can find more information on the W3C at http://www.w3c.org.)

Tags can have attributes, which provide additional information about the tags. Attributes are

part of the starting tag. For example:

<table border ="0">

In this example the <table> tag has an attribute border and its value is 0. This value applies to

the entire <table> tag, ending with the </table> tag. Table 6-1 describes some common

HTML tags.

Table 6-1 Common HTML Tags

TAG DESCRIPTION
<html> Indicates start and end of an HTML document
<title> Contains the title of the page
<body> Contains the main content, or body, of the page
<h1…h6> Creates headings (from level 1 to 6)
<p> Starts a new paragraph

 Insert a single line break
<hr> Defines a horizontal rule
<!--> Defines a comment tag in a document
 Defines bold text
<I> Defines italic text
 Defines strong text
<table> Defines a table
<tr> Defines a row of a table
<td> Defines a cell of a table row
 Defines a font name and size

There are comes tags beyond those described in table 6-1. In fact the W3C‟s HTML 4
specification is quite extensive. However, discussing all of the HTML tags is beyond the scope of
this article. Before moving to the next topic, you‟ll take a look at one more HTML example using
the tags discussed in the table. Listing 6-2 shows you another HTML document example.

Listing 6-2. HTML tag their usage

<html>
<head>
<title> A Test HTML Page</title>
</head>
<!- – This is a comment - ->

http://www.w3c.org/

<body>
<h1> Heading 1</h1>
<h2 Heading 2</h2>
<p><i>Bold and Italic Text. </i></p>
<table border = "1" width ="43%">
<tr>
<td width = "50%">Row1, Column1</td>
<td width = "50%">Row1, column2</td>
</tr>
<tr>
<td width = "50%"> Row2, Column1</td>
<td width = "50%"> Row2, Column2</td>
</tr>
</table>
</body>
</html>

NOTE: In Listing 6-2, the and <td> tags contain size and width attributes, respectively.

The size attribute tells the browser to display the size of the font, which is 4 in this example, and

the width attribute tells the browser to display the table cell as 50 percent of the browser

window.

XML Overview

I‟ll now cover some XML-related terminology. So what exactly is XML? XML stands for Extensible
Markup Language. It‟s family member of SGML and an extended version of HTML. If you‟ve ever
gotten your hands dirty with HTML, then XML will be piece of cake.

Essentially XML extends the power and flexibility of HTML. You don‟t have to work a limited
number of tags as you do in HTML. You can define your own tags. And you can store your data in
structured format.

Unlike HTML, XML stores and exchanges data. By contrast, HTML represents the data. You can
create separate XML files to store data, which can be used as a data source for HTML and other
applications.

You‟ll now see an XML example. Listing 6-3 shows a simple XML file: books.Xml. By default,

this file comes with Visual Studio (VS).NET if you have VS .NET or the .NET Framework installed
on your machine; you probably have this file in your sample folder.

You‟ll create this XML file called books.xml, which will store data about books in a bookstore.

You‟ll create a tag for each of these properties, such as a <title> tag that will store the title of the
book and so on.

You can write an XML file in any XML editor or text editor. Type the code shown in listing 6-3 and

save the file as books.xml.

This file stores information about a bookstore. The root node of the document is <bookstore>.

Other tags follow the <bookstore> tag, and the document ends with the</bookstore> tag.

Other tags defined inside the <bookstore> tag are <book>, <title>, <author>, and

<price>. The tags store information on the store name, book publication date, book ISBN

number, book title, author‟s name and price.

Listing 6-3. Your first XML file sample

<?xml version =’1.0’?>

<bookstore>

<book>

<title>The Autobiography of Benjamin Franklin</title>

<author>

<first-name>Benjamin</first-name>

<last-name>Franklin</last-name>

</author>

<price>8.99</price>

</book>

<book>

<title> The Confidence Man</title>

<author>

<first-name>Herman</first–name>

<last-name>Melville</last-name>

</author>

<price>11.99</price>

</book>

<book>

<title>The Gorgias</title>

<author>

<name>Plato</name>

</author>

<price>9.99</price>

</book>

</bookstore>

The first line of an XML file looks like this: <? Xml version =”1.0”? >. This line defines the

XML version of the document. This tag tells the browser to start executing the file. You may have

noticed that <?> doesn‟t have an ending </?> tag. Like HTML, other tags in an XML document

start with < and are followed by a/> tag. For example, the<title> tag stores the book‟s title like

this: <title> The Gorgias</title>.

In Listing 6-3, <bookstore> is the root node. Every XML document must start with a root node

with the starting tag and end with the root node ending tag; otherwise the XML passer gives an
error. (I‟ll discuss XML parsers shortly.)

Now, if you view this document in a browser, the output looks like Listing 6-4.

Listing 6-4. Output of books.xml in the browser

<?xml version="1.0" ?>

-<bookstore>

-<book>

 <title>The Autobiography of Benjamin Franklin</title>

-<author>

 <first-name>Benjamin</first-name>

 <last-name>Franklin</last-name>

 </author>

 <price>8.99</price>

 </book>

-<book>

 <title>The Confidence Man</title>

- <author>

 <first-name>Herman</first-name>

 <last-name>Melville</last-name>

 </author>

 <price>11.99</price>

 </book>

-<book>

 <title>The Gorgias</title>

- <author>

 <name>Plato</name>

 </author>

 <price>9.99</price>

 </book>

 </bookstore>

Your browser recognizes the XML and colors it appropriately.

Important Characteristics of XML

There are few things you need to know about XML. Unlike HTML, XML is case sensitive. In XML,

<Books> and <books> are two different tags. All tag in xml must be well formed and must have

a closing tag. A language is well formed only if it follows exact language syntaxes the way they
are defined.

Improper nesting of tags in XML won‟t the document property. For example:

<i>Bold and Italic Text.</i>

is not well-formed. The well- formed version of the same code is this:

<i>Bold and Italic Text.</i>

Another difference between HTML and Xml is that attributes must use double quotes in XML.
Attributes function like HTML attributes and are extra information you can add to a tag. (I‟ll
discuss attributes in the “An XML Document and its Items” section later in this article.) Having
attributes without double quotes is improper in XML. For example, Listing 6-5 is a correct

example of using the attributes ISBN, genre, and Publication date inside the

<book>tag.

Listing 6-5 Attributes in XML files

?xml version ='1.0'?>
<!-- This file represents a fragment of a book store inventory database -->
<bookstore>
<book genre = "autobiography" publicationdate = "1981" ISBN ="1-861003-11- 0">
<title>The Autobiography of Benjamin Franklin</title>
<author>
<first-name>Benjamin</first-name>
<last-name>Franklin</last-name>
</author>
<price>8.99</price>
</book>
</bookstore>

The genre, publicationdate, and ISBN attributes store information about the category,

publication date, and ISBN number of the book, respectively. Browsers won‟t have a problem
parsing the code in listing 6-5, but if you remove the double quotes the attributes like this:

<book genre = autobiography publicationdate = 1981 ISBN =1-861003-11-0>

then the browser will give the error message shown in Figure 6-1.

Figure 6-1. XML attribute definition error message

Another character you might notice in Listing 6-5 is the ! - -, which represents a comment in XML
document. (I‟ll cover comments in a moment. See the “Comments” section.)

Unlike HTML, XML preserves spaces, which means you‟ll see the white space in your document
displayed in the browser.

XML Parser

An XML parser is a program that sits between XML documents and the application using the
document. The job of a parser is to make sure the document meets the define structures,
validation, and constraints. You can define validation rules and constraints in a Document type
Definition (DTD) or schema.

An XML parser comes with Internet Explorer (IE) 4 or later and can read XML data process it,
generate a structured tree, and expose all data elements as DOM objects. The parser then
makes the data available for further manipulation through scripting. After that, another application
can handle this data.

MSXML parser comes with IE 5 or later and resides in the MSXML.DLL library. MSXML parser

supports the W3C XML 1.0 and XML DOM recommendations, DTDs, schemas, and validations.

You can use MSXML programmatically from languages such as JavaScript, VBScript, Visual
Basic, Perl, and C++.

Universal Resource Identifier (URI)

A Universal Resource Identifier (URI) is a resource name available on the Internet. A URI
contains three parts: the naming schema (a protocol used to access the resource), the name of
the machine (in the form of an Internet Protocol) upon which the resource reside, and the name of
the resource (the file name). For Example,

http://www.csharpcorner.com/Images/cshea1.gif is a URI name where http://

is a protocol, www.csharpcorner.com is the address of the machine (which is actually a

conceptual name for the address), and Images/afile.gift is the filename location on that

machine.

XML Namespaces

Because users define an XML document‟s element names, it‟s possible that many developers will
user the same names. XML namespaces allow developers to write a unique name and avoid
conflicts between element names with other developers. With the help of URI, a namespace
ensures the uniqueness of XML elements, tags, and attributes.

To declare namespaces, you can use default or explicit names. When you define your own
namespace. The W3C recommends you control the URI and point to the same location
consistently.

The scope of a document‟s elements depends on the URI. Listing 6-6 shows an example of XML
document with namespace. In this example, <book> and its attributes and tags belong to the
http://www.c-sharpcorner.com/Images URI.

Listing 6-6. XML namespace declaration example

<?xml version ='1.0'?>
<book xmlns = "http://www.c-sharpcorner.com/Images" >
<title> the autobiography of Benjamin Franklin</title>
<author>
<first-name>Benjamin</first-name>
<last-name>Franklin</last-name>
</author>
<price>8.99</price>
</book>

Document type Definition (DTD) and schemas

A Documents Type Definition (DTD) defines a document structure with a list of legal elements.
You can declare DTDs inline or as a link to an external file. You can also use DTDs to validate
XML documents. This is an example of a DTD:

<!ELEMENT Two (#PCDATA)>

<!ELEMENT one (B)>

<!ATTLIST one c CDATA # REQUIRED>

This DTD defines a format of a data. The following XML is valid because the tag<Two> is inside

the tag <one>:

http://www.csharpcorner.com/Images/cshea1.gif
http://www.csharpcorner.com/
http://www.c-sharpcorner.com/Images

<One c="Attrib">

<Two> Something here</Two>

</One>

An XML schema describes the relationship between a document‟s elements and attributes. XML
schemas describe the rules, which can be applied to any XML document, for elements and
attributes. If an XML document references a schema and it doesn‟t meet the criteria XML parser
will give an error during parsing.

You need a language to write schemas. These languages describe the syntaxes for each schema
(XML document) you write. There are many schema languages, including DTD, XML Data
Reduced (XDR), and simple object XML (SOX).

Similar to an XML document, an XML schema always starts with statement <?xml version

="1.0" ?>, which specifies the XML version.

The next statement of a schema contains an xsd:schema statement, xmlns, and target
namespace. The xsd: schema indicates that file is a schema.

A schema starts with a <xsd:schema> tag and ends with a </xsd:schema>tag. All schema

items have the prefix xsd. The xmlns =”http://www.w3.org/2001/XMLschema” is a

http://www.W3c.org URI, which indicates the schema should be interpreted according to the
default, namespace of the W3C. The next piece of this line is the target namespace, which
indicates the location of a machine (a URI). Listing 6-7.is a schema representation for the
document in Listing 6-5.

Listing 6-7. XML schema example

<xsd:schema xmlns:xsd ="http://www.w3.org/2001/XML Schema">

<xsd:element name = "bookstore" type = "bookstoreType"/>

<xsd: ComplexType name ="bookstoreType">
<xsd: squence maxOccurs = "unbounded">
<sdx: element name = "book" type = "bookType"/>
</xsd: sequence>
</xsd: complexType>

<xsd: ComplexType name = "bookType">
<xsd: sequence>
<xsd: element name = "title" type = "xsd:string:"/>
<xsd: element name = "author" type = "authorName"/>
<xsd: element name = "price" type = "xsd:decimal"/>
</xsd: sequence>
</xsd: attribute name = "genre" type = "xsd:string"/>
</xsd: complexType>

<xsd: complexType name = "authorName">
<xsd: sequence>
<xsd: element name ="first-name" type ="xsd:string"/>
<xsd: element name = "last–name" type= "xsd:string"/>
</xsd: sequence>
</xsd: complexType>
</xsd:schema>

http://www.w3.org/2001/xml%20schema
http://www.w3c.org/

In this listing, <ComplexType>, <sequence> and<element> are schema elements. An

element is a simple item with a single element. The ComplexType element is a set of

attributes that denotes that element has children. Some other schema items are <all>,
<annotation>, <any>, <anyAttribute>, <attribute>, <choice>,

<documentation>, <field>, <group>, <include>, <key>, <length>,

<maxLength>, <minLegth>, <selection>, <pattern>, <simpleType>,

<unique>, and so on.

Elements and attributes are basic building block of a schema. An element is a tag with data. An
element can have nested elements and attributes. Elements with one or more elements or

attributes are ComplexType elements. An element contains a name and a data type. For

example, the element price is of type decimal in the following line:

<xsd:element name ="price" type = "xsd:decimal"/>

This definition of the element price makes sure that it can only store a decimal type of a value.
Other types of values are invalid values. For example, this is valid:

<price>19.95</price>

But this example is invalid:

<price>something</price>

Schema attributes are similar to XML attributes, but you can also define them using an
xsd:attribute item. For example:

<xsd: ComplexType name= "bookstoreType">

or

<xsd: attribute name = " bookstoreType" type ="xsd:string"/>

A full discussion of these items is beyond the scope of this article: however, I‟ll describe any items
I use in any of the samples.

Extensible Hypertext markup language (XHTML)

Extensible Hypertext Markup Language (XHTML) is a next-generation language of HTML. In
January 2000, XHTML 1.0 became a W3C recommendation. XHTML is a better and improved
version of HTML; however, it does have some restrictions.

XHTML is a combination of XML and HTML. XHTML uses elements of HTML 4.01 and rules of
XML to provide a more consistent, well-formed and organized language.

An XML Document and its Items

An XML document is a set of elements in a well-formed and valid standard format. A document

is valid if it has DTD associated with it and if it complies with the DTD. As mentioned earlier, a
document is well formed if it contains one or more elements and if it follows the exact syntaxes of
the language. An XML parser will only parse a document that is a well formed, but the document
doesn‟t necessarily have to be valid. This means that a document must have at least one element
(a root element) in it, but it doesn‟t matter whether it uses DTDs.

An XML document has the following parts, each described in the sections that follow:

 Prolog

 DOCTYPE declaration

 Start and end tags

 Comments

 Character and entity references

 Empty elements

 Processing instructions

 CDATA section

 Attributes

 White spaces

Prolog

The prolog part of a document appears before the root tag. The prolog information applies to the
entire document. It can have character encoding, stylesheets, comments, and processing
instructions. This is an example of a prolog:

<?xml version ="1.0" ?>

<?xml-stylesheet type="text/xsl" href ="books.xsl" ?>

<!DOCTYPE StudentRecord SYSTEM "mydtd.dtd">
<!=my comments - - - ->

DOCTYPE Declaration

With the help of a DOCTYPE declaration, you can read the structure of your root element and
DTD from external files. A DOCTYPE declaration can contain a root element or a DTD (used for
document validation). In a validating environment, a DOCTYPE declaration is must. In a
DOCTYPE reference, you can even use a URI reference. For example:

<!DOCTYPE rootElement>

or

<!DOCTYPE rootElement SYSTEM "URIreference">

or

<!DOCTYPE StudentRecord SYSTEM "mydtd.dtd">

Start and End tags

Start and end tags are the heart of XML language. As mentioned earlier in the article, XML is

nothing but a text file start and end tags. Each tag starts with <TAG> and ends with </TAG>. If

you want to add a tag called <book> to your XML file, it must start with <book> and end the

</book>, as shown in this example:

<?xml version ="1.0" ?>

<book xmlns = "http://www.c-sharpcorner.com/xmlNet">
<title> The Autobiography of Benjamin Franklin</title>

<author>

<first-name>Benjamin</ First-name>

<last-name>Franklin</ last- name>

</author>

<price>8.99</ price>

</book>

NOTE: Empty elements don‟t have to heed this < >….</ > criteria. I‟ll discuss empty tags later in
the “Empty Elements” section.

NOTE: An element is another name a starting and ending tag pair

Comments

Using comments in your code is good programming practice. They help you understand your

code, as well as help others to understand your code, by explaining certain code lines. You use
the <! - - and - - > pair to write comments in an XML document:

<!-- My comments here -->

<!-- This is a comment -->

XML parsers ignore comments.

CDATA Sections

What if you want to use < and > characters in your XML file but not as part of a tag? Well, you
can‟t use them because the XML parser will interpret them as start and end tags. CDATE
provides the following solution. So you can use XML markup characters in your documents and
have the XML parser ignore them. If you use the following line:

<! [CDATA [I want to use < and >, characters]]>

the parser will treat those characters as data.
Another good example of CDATA is the following example:

<! [CDATA [< Title>This is the title of a page</ Title>

In this case, the parser will treat the second title as data as data, not as a mark up tag.

Character and entity reference

In some cases, you can‟t use a character directly in a document because of some limitations,
such as character being treated as markup character or a device or processor limitation.

By using character and entity references, you can include information in a document by reference
rather than the character.

A character reference is a hexadecimal code for a character. You use the hash symbol (#) before
the hexadecimal value. The XML parser takes care of the rest. For example, the character

reference for the Return Key is# x000d.

http://www.c-sharpcorner.com/xmlNet

The reference start with an ampersand (&) and a #, and it ends with a semicolon (;). The syntax

for decimal and hexadecimal references is & # value; and &#xvalue; respectively. XML has

some built-in entities. Use the It, gt, and amp entities for less than, greater than, and ampersand,
respectively. Table 6-2 shows five XML built-in entities and their references. For example, if you
want to write a > b or Jack & Jill, you can do that by using these entities:

A>b and Jack& Jill

Table 6-2. XML Build- in Entities

ENTITY REFERENCE DESCRIPTION
Lt < Less than: <
Gt > Greater than: >
Amp & Ampersand: &
Apos &apos Single quote: „
Auot " Double quote: “

Empty elements

Empty elements start and end with the same tag. They start with < and end with >. The text
between these two symbols is the text data. For example:

<Name> </Name>

<tagname/>

are all empty element example. The specifies an inline image, and the SRC attribute

specifies the image‟s location. The image can be any format, though browsers generally support
only GIF, JPEG, and PNG images.

Processing Instructions

Processing instructions (PIs) play a vital role in XML parsing. A PI holds the parsing instructions,
which are read by the parser and other programs. If you noticed the first line of any of the XML
samples discussed earlier, a PI starts like this:

<?xml version ="1.0" ?>
All PIs start with <? And end with ?>. This is another example of PI:

<?xml-stylesheet type ="text/ xsl" href = "myxsl.xsl"?>

This PI tells a parser to apply a stylesheet on the document.

Attributes

Attributes let you add extra information to an element without creating another element. An

attribute is a name and value pair. Both the name and value must be present in an attribute. The
attribute value must be in double quotes; otherwise the parser will give an error. Listing 6-8 is an

example of an attribute in a <table> tag. In the example, the <table> tag has border and width

attributes, and the <td> tag a width attribute.

Listing 6-8. Attributes in the < table> tag

<table border ="1" width = "43%">

mailto:Jack@amp

<tr>

<td width ="50%">Row1, Column1</td>

<td width ="50%">Row1, Column2</td>
</tr>

<tr>

<td width = "50%">Row2, Column1</td>

<td width = "50%">Row2, Column2</td>
</tr>

</table>

White spaces

XML preserves white spaces except in attribute values. That means white space in your
document will be displayed in the browser. However, white spaces are not allowed before the
XML declaration. The XML parser reports all white spaces available in the document. If white
spaces appear before declaration, the parser treats them as PI.

In element, XML 1.0 standard defines the xml: space attribute to insert spaces in a document.

The XML:space attribute accepts only two values: default and preserve. The default

value is the same as not specifying an xml:space attribute. It allows the parser to treat spaces as

in a normal document. The Preserve value tells the parser to preserve space in the document.

The parser preserves space in attributes, but it converts line break into single spaces.

DOM overview

Document object model (DOM) is a platform- and language- neutral interface that allows
programs and scripts to dynamically access and update XML and HTML documents. The DOM
API is a set of language- independent, implementation- neutral interfaces and objects based on
the Object Management Group (OMG) Interface Definition Language (IDL) specification (not the
COM) version of IDL). Set http://www.w3.org/TR/DOM-Level-2/ for more detail.

DOM defines the logical structure of a document‟s data. You can access the document in a
structured format (generally through a tree format). Tree nodes and entities represent the
document‟s data. DOM also helps developers build XML and HTML documents, as well as to
add, modify, delete, and navigate the document‟s data. Figure 6-2 shows you various contents of
DOM in a tree structure.

Figure 6-2. DOM tree structure

This is the tree structure implementation of an XML file.

<table>

<tr>

<td>Mahesh </td>

<td>Testing</td>

</tr>

<tr>

<td> Second Line</td>

<td> Tested</td>

</tr>

</table>

Figure 6-3 shows the DOM tree representation of this XML.

http://www.w3.org/TR/DOM-Level-2/

Figure 6-3. XML DOM tree representation

In DOM, a document takes a hierarchical structure, which is similar to a tree structure. The
document has a root node, and the rest of the document has branches and leaves.

These nodes are defines as interfaces object. You use the interfaces to access and manipulate
document objects. The DOM core API also allows you to create and populate documents load
documents and save them.

Table 6-3 defines some XML document nodes and node contents.

Table 6-3. XML Nodes

NODE DESCRIPTION CHILDREN
Document Represent an HTML or XML

document and root of the document
tree

Element,
ProcessingInstruction,
DocumentType, Comment

DocumentType Represent the document type
attribute of a document

No children

Element An element of the document Element, Text, Comment,
ProcessingInstruction,
CDATASection,
EntityReference

Attr An attribute Text, EntityReference
ProcessingInstruction Represent a processing instruction;

used in XML
No children

Comment Represent comments in an XML or
HTML document; characters
between the starting <! - - and
ending - - >

No children

Text Text of a node No children
Entity An entity type item Element, Text, Comment,

ProcessingInstruction,
CDATASection,
EntityReference

XML Representation in .NET World

Microsoft‟s .NET Framework utilizes XML features to internally and externally transfer data
between applications. In this section, you‟ll see XML namespaces and classes, which I‟ll be using

in the examples through out this article. In the .NET Framework Library, the System.Xml and its

four supportive namespaces define the functionality to work with XML data and documents.

These namespaces are System.Xml, system.Xml.Schema,

System.Xml.Serialization, System.Xml.Xpath, and System.Xml.Xsl. These

namespaces reside in the System.Xml.dll assembly.

Before moving to the next topic, I‟ll describe these namespaces and their classes. I‟ll also discuss
some of these classes in more detail through out this article.

The System.Xml Namespace

The System.Xml namespace defines common and major XML functionality. It defines classes

for XML 1.0 XML namespaces and schemas. XPath, XSL Transformations (XSLT), DOM Level 2
core and SOAP 1.1.

The following sections define some of the System.Xml namespace classes.

The xml Node Class

The XmlNode class, an abstract base class for XmlDocument and XmlDataDocument,

represents a single node in a document. This class implements methods for adding, removing,
and inserting nodes into a document. This class also implements properties to get data from a
node such as name, child nodes, siblings, parents, and so on.

Document classes

The System.Xml namespace also contains classes to a deal with XML documents. The

XmlDocument and XmlDocument Fragment classes represent an entire XML document and a

fragment of a document, respectively. The XmlDocumentFragment class is useful when you

deal a small fragment of a document.

The XmlDataDocument class allows you to work with relational data using the DataSet

object. It provides functionality to store, retrieve, and manipulate data. The XmlDocumentType

class represents the type of document.

The XmlDocument and XmlDataDocument classes come form XmlNode. Besides the

methods contained in XmlNode, this class implements a series of Createxxx methods to create

a document‟s contents such as Comment, Element, Text and all the other contents discussed in
the “DOM Overview” section of this article. You can even load an XML document by using its

Load and LoadXml methods.

Each content type of an XML document has corresponding class defined in this namespace. The

classes are XmlAttribute, XmlCDataSection, XmlComment, XmlDeclaration,
XmlEntity, XmlEntityReference, XmlProcessingInstruction, XmlText, and

XmlWhitespace. All of these classes are self–explanatory. For example, the Attribute and

XmlComment classes represent an attribute and comment of a document. You‟ll see these

classes in the examples.

Reader and Writer classes

Six classes (XmlReader, XmlWriter, XmlTextWriter, XmlTextReader

XmlValidatingReader, and XmlNodeReader) represent the reading and writing XML

documents.

XmlReader and XmlWriter are abstract base classes representing a reader that provides

fast, non-cached, forward-only stream access to XML documents. XmlReader has three classes:

XmlTextReader, XmlValidatingReader, and XmlNodeReader. As their node imply,

XmlTextReader is for reading text XML documents, XmlNodeReader is for reading XML DOM

trees, and XmlvalidatingReader can validate data using DTDs or schemas. This reader also

expands general entities and supports default attributes. Xml writer is an abstract base class that
defines functionality to write XML. It implements methods and properties to write XML contents.

XmlTextWriter class comes from the XmlWrinter class.

Other classes

The XmlConvert class provides conversion in XML. It defines methods for converting Common

Language Runtime (CLR), or .NET data types, and XML schema Definition (XSD) types.

 XmlException defines functionality to represent detailed exceptions

 XmlNamespaceManager resolves, Adds, and removes namespace to a collection and

provides scope management for these namespaces.

 XmlLinkedNode returns the node immediately preceding or following this node.

 XmlNodeList represents a collection of nodes.

The System. Xml. Schema Namespace

The System.Xml.Schema namespace contains classes to work with XML schemas. These

classes support XML schemas for structure and xml schemas for data types.

This namespace defines many classes to work with schemas. The discussion of these classes is

beyond the scope of this book. Some of these namespace classes are XmlSchema,

XmlSchemaAll, XmlSchemaPath, and XmlSchemaType.

The System.Xml.Serialization Namespace

This namespace contains classes to serialize objects into XML format documents or streams.
Serialization is the process of reading and writing an object to or from a persistent storage
medium such as a hard drive.

You can use the main class.XmlSerializer, with TextWriter or XmlWriter to write

the data to document. Again this namespace also defines many classes. The discussion of these
classes is beyond the scope of this article.

The System.Xml.XPath Namespace

This namespace is pretty small in comparison to the previous three namespaces. This

namespace contains only four classes: XpathDocument, XpathExression.

XPathNavigator, and XPathNodeIterator.

The XPathDocument class provides fast XML document processing using XSLT. This class is

optimized for XSLT processing and the XPATH data model. The CreateNavigator method of

this class creates an instance of XpathNavigator.

The XpathNavigator class reads data and treats a document as a tree and provides methods to

traverse through a document as a tree. Its Movexxx methods let you traverse through a

document.

Two other classes of this namespace are XpathExpression and XpathIterator.

XpathExpression encapsulates an Xpath expression, and XpathIterator provides an Iterator

over the set of selected nodes.

The System.Xml.Xsl Namespace

The last namespace, System.Xml. Xsl, defines functionality for XSL/T transformations. It

suppports XSLT 1.0. The XsltTransform class defines functionality to transform data using an
XSLT stylesheet.

DOM Interfaces

As you‟ve seen in the previous discussion, you can represent an XML document in a tree
structure using DOM interfaces and objects (shown in figure 6-3).

Microsoft .NET provides a nice wrapper around these interfaces: the DOM API. This wrapper has
a class for almost every interface. These classes hide all the complexity of interface programming
and provide a high-level programming model for developers. For example, the .NET class

XmlDocument provides a wrapper for the Document interface.

Besides DOM, the Microsoft .NET XML API also provides corresponding classes for the XPath,
XSD and XSLT industry standards. These classes are well coupled with the .NET database
models (ADO.NET) to interact with databases.

The XML.NET Architecture

The XML.NET API is a nice wrapper around the XML DOM interfaces and provides a higher-
level of programming over XML documents. The heart of the XML .NET architecture consists of

three classes: XmlDocument, XmlReader, and XmlWriter.

The XmlRader and XmlWriter classes are abstrct base classes that provide fast, non-

cached, forward- only cursors to read/ write XML data. XmlTextReader,

XmlValidatingReader, and XmlNodeReader are concrete implementations of the

XmlReader class. The XmlWriter and XmlNodeWriter classes come from the XmlWriter

class. XmlDocument represents an XML document in a tree structure with the help of the

XmlNode, XmlElement, and XmlAttribute classes.

Figure 6-4 shows a relationship between these classes and the XML.NET architecture.

Figure 6-4. XML.NET architecture

The System.Xml.Xsl interface provides classes that implement XSLT. (I‟ll discuss XSLT in

more detail later in this article.) The XmlTransform class implements XSLT. This class reads

and writes XML data with the help of the XmlReader and XmlWriter classes.

The XPathDocument and the XPathNavigator classes provide read/ write and navigation

access to the XML documents.

Associated with these classes are some more powerful classes for working with XML. I‟ll discuss
these classes in “Navigation in XML” and other sections of this article.

Adding System.Xml Namespace Reference

You‟re probably aware of this, but before using System.Xml classes in your application, you

may need to add a reference to the System.Xml.dll assembly using Project > Add Reference

(see figure 6-5) and include the System.Xml namespace:

using System.Xml;

Figure 6-5. Adding a reference to the System.Xml.dlll assembly

The abstract base classes XmlReader and XmlWriter support reading and writing XML

documents in the .NET Framework.

Reading XML

The XmlReader is an abstract base class for XML reader classes. This class provides fast, non-

cached forward-only cursors to read XML documents.

The XmlTextReader, XmlNodeReader, and XmlValidatingReader classes are defined

from the XmlReader class. Figure 6-6 shows XmlReader and its derived classes.

Figure 6-6. XmlReader classes

You use the XmlTextReader, XmlNodeReader, and XmlValidatingReader classes to

read XML documents. These classes define overloaded constructors to read XML files, strings,

streams, TextReader objects, XmlNameTable, and combinations of these. After creating

an instance, you simply call the Read method of the class to read the document. The Read
method starts reading the document from the root node and continues until Read returns false,
which indicates there is no node left to read in the document. Listing 6-9 reads an XML file and
displays some information about the file. In this example I‟ll use the books.xml file. You can use
any XML by replacing the string name.

Listing 6-9. Reading an XML file

XmlTextReader reader = new XmlTextReader(@"C:/books.Xml");

Console.WriteLine ("General Information");

Console.WriteLine ("= = = = = = = = = ");

Console.WriteLine(reader.Name);

Console.WriteLine(reader.BaseURI);

Console.WriteLine(reader.LocalName);

Getting Node Information

The Name Property returns the name of the node with the namespace prefix, and the

LocalName property returns the name of the node without the prefix.

The Item is the indexer. The Value property returns the value of a current node. you can even get
the level of the node by using the Depth property, as shown in this example:

XmlTextReader reader = new XmlTextReader(@"C:/books.Xml");

while (reader.Read())

{

if (reader.HasValue)

{

Console.WriteLine("Name : "+ reader. Name);

Console.WriteLine("Node Depth: " + reader.Depth.ToString());

Console.WriteLine("Value : " + reader.Value);

}

}

The Node Type property returns the type of the current node in the form of XmlNodeType

enumeration:

XmlNodeType type = reader.NodeType;

Which defines the type of a node. The XmlNodeType enumeration members are Attribute,

CDATA, Comment, Document, Element, WhiteSpace, and so on. These represent XML
document node types.

In Listing 6-10, you read a document‟s nodes one by one and count them. Once reading and
counting are done, you see how many comments, processing instructions, CDATAs, elements,
whitespaces, and so on that a document has and display them on the console. The

XmlReader.NodeType property returns the type of node in the form of XmlNodeType

enumeration. The XmlNodeType enumeration contains a member corresponding to each node

types. You can compare the return value with XmlNode Type memebers to find out the type of a

node.

Listing 6-10. Getting node information

static void Main(string[] args)

 {

int DecCounter = 0, PICounter = 0, DocCounter = 0, CommentCounter = 0;

int ElementCounter = 0, AttributeCounter = 0, TextCounter = 0,

WhitespaceCounter = 0;

XmlTextReader reader = new XmlTextReader(@"C:/books.Xml");

while (reader.Read())

{

 XmlNodeType nodetype = reader.NodeType;

 switch (nodetype)

 {

 case XmlNodeType.XmlDeclaration:

 DecCounter++;

 break;

 case XmlNodeType.ProcessingInstruction:

 PICounter++;

 break;

 case XmlNodeType.DocumentType:

 DocCounter++;

 break;

 case XmlNodeType.Comment:

 CommentCounter++;

 break;

 case XmlNodeType.Element:

 ElementCounter++;

 if (reader.HasAttributes)

 AttributeCounter += reader.AttributeCount;

 break;

 case XmlNodeType.Text:

 TextCounter++;

 break;

 case XmlNodeType.Whitespace:

 WhitespaceCounter++;

 break;

 }

}

// print the info

Console.WriteLine("White Spaces:" + WhitespaceCounter.ToString());

Console.WriteLine("Process Instruction:" + PICounter.ToString());

Console.WriteLine("Declaration:" + DecCounter.ToString());

Console.WriteLine("White Spaces:" + DocCounter.ToString());

Console.WriteLine("Comments:" + CommentCounter.ToString());

Console.WriteLine("Attributes:" + AttributeCounter.ToString());

}

The case statement can have values XmlNodeType.XmlDeclaration,
XmlNodeType.ProcessingInstruction, XmlNodeType.DocumentType,

XmlNodeType.Comment, XmlNodeType.Element, XmlNodeType.Text,

XmlNodeType.Whitespace, and so on.

The XmlNodeType enumeration specifies the type of node. Table 6-4 describes its members.

Table 6-4. the xml Node Type Enumeration’s members

MEMBER NAME DESCRIPTION
Attribute Attribute node
CDATA CDATA section
Comment Comment node
Document Document object
DocumentFragment Document Fragment
DocumentType The DTD, indicated by the <! DOCTYPE> tag
Element Element node
EndElement End of element
EndEntity End of an entity
Entity Entity declaration
EntityReference Reference to an entity
None Returned if XmlReader is not called yet
Notation Returned if XmlReader is not called yet
ProcessingInstruction Represents a processing instruction (PI) node
SignificationWhitespace Represents white space between markup in a mixed

content model
Text Represent the text content of an element
Whitespace Represents white space between markup
XmlDeclaration Represents an XML declaration node

Moving to a Content

You can use the MoveToMethod to move from the current to the next content node of an XML

document. A content‟s node is an item of the following type: text CDATA, Element,

EntityReference, or Entity. So if you call the MoveToContent method, it skips other types of

nodes besides the content type nodes. For example if the next node of the current node is
DxlDeclaration, or DocumentType, it will skip these nodes until it finds a content type node. See
the following example:

XmlTextReader reader = new XmlTextReader(@"c:\books.xml");

if (reader.Read())

{

Console.WriteLine(reader.Name);

reader.MoveToContent();

Console.WriteLine(reader.Name);

}

The Get Attributes of a Node

The GetAttribute method is an overloaded method. You can use this method to return

attributes with the specified name, index, local name, or namespace URI. You use the

HasAttributes property to check if a node has attributes, and AttributesCount returns the

number of attributes on the node. The local name is the name of the current node without

prefixes. For example, if <bk:book> represents a name of a node, where bk is a namespace

and: is used to refer to the namespace, the local name for the <bk:book> element is book.

MoveToFirstAttributes moves to the first attribute. The MoveToElement method moves to

the element that contains the current attributes node (see listing 6-11).

Listing 6-11. Get Attributes of a node

using System;

using System.Xml;

class XmlReaderSamp

{

static void Main(string[] args)

{

XmlTextReader reader = new XmlTextReader(@"C:\books. Xml");

reader.MoveToContent();

reader.MoveToFirstAttribute();

Console.WriteLine("First Attribute value" + reader.Value);

Console.WriteLine("First Attribute Name" +reader.Name);

while (reader.Read())

{

 if (reader.HasAttributes)

 {

 Console.WriteLine(reader.Name + "Attribute");

 for (int i = 0; i < reader.AttributeCount; i++)

 {

 reader.MoveToAttribute(i);

 Console.WriteLine("Nam: " + reader.Name + ", value: " +

reader.Value);

 }

 reader.MoveToElement();

 }

}

}

}

You can move to attributes by using MoveToAttribute, MoveToFirstAttribute, and

MoveToNextAttribute. MoveToFirstAttribute and MoveToNextAttribute move to the

first and next attributes, respectively. After calling MoveToAttribute, the Name,

Namespace, and Prefix property will reflect the properties of the specified attribute.

Searching for a Node

The Skip method skips the current node. It‟s useful when you‟re looking for a particular node and

want to skip other nodes. In listing 6-12, you read your books.xml document and compare its

XmlReader.Name(through XmlTextReader) to look for a node with name bookstore and

display the name, level, and value of that node using XmlReader’s Name, Depth, and

Value properties.

Listing 6-12. Skip Method

XmlTextReader reader = new XmlTextReader(@"c:\books.xml");

while (reader.Read())

{

// Look for a Node with name bookstore

if (reader.Name != "bookstore")

reader.Skip();

else

{

Console.WriteLine("Name: " + reader.Name);

Console.WriteLine("Level of the node:" + reader.Depth.ToString());

Console.WriteLine("Value: " + reader.Value);

}

}

Closing the Document

Finally, use Close to close the opened XML document.

Table 6-5 and 6-6 list the XmlReader class properties and methods. I‟ve discussed some of

them already.

Table 6-5 xml Reader properties

PUBLIC INSTANCE PROPERTY DESCRIPTION
AttributeCount Returns the number of attributes on the current node
BaseURI Returns the base URI of the current node
Depth Returns the level of the current node
EOF Indicates whether its pointer is at the end of the stream

HasAttributes Indicates if a node has attributes or not
HasValue Indicates if a node has a value or not
IsDefault Indicates whether the current node is an attributes

generated from the default value defined in the DTD or
schema

IsEmptyTag Returns if the current node is empty or not
Item Returns if value of the attribute
LocalName Name of the current node without the namespace prefix
Name Name of the current node with the namespaces prefix
NamespaceURI Namespace uniform Resource Name (URN) of the current

namespace scope
NameTable Returns the XmlNameTable associated with this

implementation
NodeType Returns the type of node
Prefix Returns the namespace associated with a node
ReadState Read state
Value Returns the value of a node
XmlLang Returns the current xml:lang scope

XmlSpace Returns the current xml:space scope

Table 6-6. xml Reader Methods

PUBLIC INSTANCE METHOD DESCRIPTION
Close Close the stream and changes ReadState to

Closed
GetAttribute Returns the value of an attribute
IsStartElement Checks if a node has start tag
LookupNamespace Resolves a namespace prefix in the current

element‟s scope
MoveToAttribute, MoveToContent,

MoveToElement,

Moves to specified attributes, content, and
element

MoveToFirstAttribute,

MoveToNextAttribute

Moves to the first and next attributes

Read Reads a node
ReadAttributeValue Parses the attributes value into one or more Text

and/or EntityReference node types
ReadXXXX (ReadChar, ReadBoolean,

ReadDate, ReadIn32, and so on)

Reads the contents of an element into the
specified type including char, double, string, date,
and so on

ReadInnerXml Reads all the content as a string
Skip Skips the current element

Writing XML

The XmlWriter class contains methods and properties to write to XML documents, and

XmlTextWriter and XmlNodeWriter come from the XmlWriter class (see figure 6-7).

Figure 6-7. XmWriter classes

Besides providing a constructor and three properties (WriteState, XmlLang, and

XmlSpace), the XmlWriter classes have many writexxx methods to write to XML documents.

This section discusses some of these class methods and properties and uses them in examples

of the XmlTextWriter and XmlNodeWriter classes. XmlTextWriter creates a write

object and writes to the document. The XmlTextWriter constructor can take three types of

inputs: a string, a stream, or a TextWriter.

XmlWriter properties

The XmlWriter class contains three properties: WriterState, XmlLang, and XmlSpace.

The WriteState property gets the current state of the XmlWriter class. The values could

be Attributes, Start, Element, Content, closed, or Prolog. The return value WriteState.Start

means the Write method is not yet called. In otnher cases, it represents what is being written. For

example, the return value WriteState.Attribute means the Attribute value has written.

WriteState.Close represents that the stream has closed by calling Close method.

Writing XML Items

As discussed earlier, an XML document can have any types of items including elements,

Comments, attributes, and white spaces. Although it‟s not possible to describe all the Writexxx

methods here. I‟ll cover some of them.

The WriteStateDocument and WriteEndDocument methods open and close a document for

writing, respectively. You must open a document before you start writing to it. The

WriteComment method writes comment to a document. It takes only one string type of

argument. The WriteString method writes a string to a document. With the help of

WriteString, you can use the WriteStartElement and WriteEndElement method pair

to write an element to a document. The WriteStartAttribute and WriteEndAttribute

pair writes an attribute. WriteNode is another write method, which writes XmlReader to a

document as a node of the document. The following example summarizes all these methods and

creates a new XML document with some items in it such as elements, attributes, strings,

comments, and so on. (See listing 6-13 in the next section.)

mailto:Write%20Node%20is%20another%20write%20method,%20which%20writes%20xml%20Reader%20to%20a%20document%20as%20a%20Node%20of%20the%20document.%20%20The%20following%20example%20summarizes%20alll%20these%20methods%20and%20creates%20a%20new%20XML
mailto:Write%20Node%20is%20another%20write%20method,%20which%20writes%20xml%20Reader%20to%20a%20document%20as%20a%20Node%20of%20the%20document.%20%20The%20following%20example%20summarizes%20alll%20these%20methods%20and%20creates%20a%20new%20XML
mailto:Write%20Node%20is%20another%20write%20method,%20which%20writes%20xml%20Reader%20to%20a%20document%20as%20a%20Node%20of%20the%20document.%20%20The%20following%20example%20summarizes%20alll%20these%20methods%20and%20creates%20a%20new%20XML
mailto:Write%20Node%20is%20another%20write%20method,%20which%20writes%20xml%20Reader%20to%20a%20document%20as%20a%20Node%20of%20the%20document.%20%20The%20following%20example%20summarizes%20alll%20these%20methods%20and%20creates%20a%20new%20XML

In this example, you create a new XML file, c:\xmlWriterText.xml, using XmlTextWriter:

// Create a new file c:\ xmlWriterTest.Xml

XmlTextWriter writer = new XmlTextWriter("C:\\xmlWriterTest.xml",

null);

After that, add comments and elements to the document using Writexxx methods. After that you

can read the books.xml xml file using Xml TextReader and add its elements to

xmlWriterTest.xml using XmlTextWriter:

// Create an XmlText Reader to read books. xml

XmlTextReader reader = new XmlTextReader ("@c:\books.xml");

while (reader.Read())

{

if (reader.NodeType == XmlNodeType.Element)

{

// Add node.xml to xmlWriterTest .xml using WriteNode

writer.WriteNode(reader, true);

}

}

Listing 6-13 shows an example of using XmlWriter to create a new document and write its

items. This program creates a new XML document, xml writer Test, in the C:\root directory.

Listing 6-13 XmlWriter example

static void Main(string[]args)

{

// Create a new File c:\xmlWriterTest.xml

XmlTextWriter writer = new XmlTextWriter("C:\\ xmlWriterTest.xml",

null);

// opens the document

writer.WriteStartDocument();

// write comments

writer.WriteComment("This Program uses XmlTextWriter.");

writer.WriteComment("Developed by :Mahesh Chand.");

writer.WriteComment("= = = = = = = = = = = = = = =");

// write first element

writer.WriteStartElement("root");

writer.WriteStartElement("r", "RECORD", "urn: record");

// write next element

writer.WriteStartElement ("FirstName"," ");

writer.WriteString("Mahesh");

writer.WriteEndElement();

// write one more element

writer.WriteStartElement("LastName", " ");

writer.WriteString("Chand");

writer.WriteEndElement();

mailto:Write%20Node%20is%20another%20write%20method,%20which%20writes%20xml%20Reader%20to%20a%20document%20as%20a%20Node%20of%20the%20document.%20%20The%20following%20example%20summarizes%20alll%20these%20methods%20and%20creates%20a%20new%20XML
mailto:Write%20Node%20is%20another%20write%20method,%20which%20writes%20xml%20Reader%20to%20a%20document%20as%20a%20Node%20of%20the%20document.%20%20The%20following%20example%20summarizes%20alll%20these%20methods%20and%20creates%20a%20new%20XML
mailto:Write%20Node%20is%20another%20write%20method,%20which%20writes%20xml%20Reader%20to%20a%20document%20as%20a%20Node%20of%20the%20document.%20%20The%20following%20example%20summarizes%20alll%20these%20methods%20and%20creates%20a%20new%20XML
mailto:Write%20Node%20is%20another%20write%20method,%20which%20writes%20xml%20Reader%20to%20a%20document%20as%20a%20Node%20of%20the%20document.%20%20The%20following%20example%20summarizes%20alll%20these%20methods%20and%20creates%20a%20new%20XML

// Create an XmlTextReader to read books.xml

XmlTextReader reader = new XmlTextReader(@"c:\books. Xml");

while (reader.Read())

{

if (reader.NodeType == XmlNodeType.Element)

{

// Add node.xml to xmlWriterTest.xml using WriteNode

writer.WriteNode(reader, true);

}

}

// Ends the document.

writer.WriteEndDocument();

writer.Close();

return;

}

NOTE: In Listing 6-13 you write output of the program to a file. If you want to write your output

directly on the console, pass Console.Out as the file name when create an XmlTextWriter

object. For example: XmlTextWriter writer = new XmlTextWriter (Console.Out);

When you open C: \ xmlWriterTest.Xml in a browser, the output of the program looks like

Listing 6-14.

Listing 6-14. Output of XmlWriterSample.cs class

<?xml version="1.0" ?>

- <!-- This program uses xmlTextWriter. -->

- <!-- Developed by: Mahesh chand. -->

- <!-- = = = = = = = = = = = = = -->

- <root>

- <r:RECORD xmlns:r="urn:record">

 <FirstName>Mahesh</FirstName>

 <LastName>Chand</LastName>

- <bookstore>

- <book genre="autobiography" publicationdate="1981"

ISBN="1-861003-11-0">
 <title>the Autobiography of Benjamin

Franklin</title>
- <author>

 <First-name>Benjamin</First-name>

 <last-name>Franklin</last-name>

 </author>

 <price>8.99</price>

 </book>

-<book genre="novel" publicationdate="1967" ISBN="0-201-

63361-2">
 <title>The confidence man</title>

- <author>

 <first-name>Herman</first-name>

 <last-name>Malville</last-name>

 </author>

 <price>11.99</price>

 </book>

-<book genre="Philosophy" publicationdate="1991" ISBN="1-

861001-56-6">
 <title>The Gorgias</title>

- <author>

 <name>Plato</name>

 </author>

 <price>9.99</price>

 </book>

 </bookstore>

 </r:RECORD>

 </root>

The close method

You use the Close method when you‟re done with the XmlWriter object, which closes the

stream.

The XmlConvert class

There are some characters that are not valid in XML documents. XML documents use XSD types,

which are different than CRL (.NET) data types. The XmlConvert class contains methods to

convert from CLR types to XSD types and vice versa. The DecodeName method transfers an

XML name into an ADO.NET object such as DataTable. The EncodeName Method is the

reverse of DecodeName: it converts an ADO.NET object to valid XSD name. It takes any invalid

character and replaces it with an escape string. Another method, EncodeLocalNAme, converts

unpermitted names to valid names.

Besides these three methods, the XmlConvert class has many methods to convert from a string

object to Boolean. Byte, integer, and so on. Listing 6-15 shows the conversion from Boolean and
Date Time object to XML values.

Listing 6-15 xml convert example

XmlTextWriter writer = new XmlTextWriter(@"c:\test. Xml", null);

writer.WriteStartElement("MyTestElements");

bool b1 = true;

writer.WriteElementString("TestBoolean", XmlConvert.ToString(b1));

DateTime dt = new DateTime(2000, 01, 01);

writer.WriteElementString("test date", XmlConvert.ToString(dt));

writer.WriteEndElement();

writer.Flush();

writer.Close();

../../My%20Documents/Documents%20and%20SettingsAdministratorDesktop%22

Understanding DOM Implementation

Microsoft.NET supports the W3C DOM Level 1 and Core DOM Level 2 specifications. The .NET

Framework provides DOM implementation through many classes. XmlNode and XmlDocument

are two of them. By using these two classes, you can easily traverse though XML documents in
the same manner you do in a tree.

The XmlNode class

The XmlNode class is an abstract base class. It represents a tree node in a document. This tree

node can be the entire document. This class defines enough methods and properties to represent
a document node as a tree node and traverse though it. It also provides methods to insert,
replace, and remove document nodes.

The ChildNodes property returns all the children nodes of current node. You can treat an entire

document as node and use ChildNodes to get all nodes in a document. You can use the

FirstChild, LastChild, and HasChildNodes triplet to traverse from a document‟s first

node to the last node. The ParentNode, PreviousSibling, and NextSibling properties

return the parent and next sibling node of the current node. Other common properties are

Attributes, Base URI, InnerXml, Inner Text, Item Node Type, Name, Value, and

so on.

You can use the CreateNavigator method of this class to create an Xpath Navigator object,

which provides fast navigation using xpath. The Appendchilds, InsertAfter, and
InsertBefore methods add nodes to the document. The Remove All, Remove

Child, and ReplaceChild methods remove or replace document nodes, respectively. You‟ll

implement these methods and properties in the example after discussing a few more classes.

The xml Document Class

The XmlDocument class represents an XML document. Before it‟s derived from the XmlNode

class, it supports all tree traversal, insert, remove, and replace functionality. In spite of XmlNode

functionaality, this class contains many useful methods.

Loading a Document

DOM is a cache tree representation of an XML document. The Loads and LoadXml methods

of this class load XML data and documents, and the Save method saves a document.

The Load Method can load a document from a string, stream, TextReader, or XmlReader. This

code example loads the document books.xml from a string:

XmlDocument xmlDoc = new XmlDocument();

string filename = @"c:\ books. Xml";

xmlDoc.Load(filename);

xmlDoc.Save(Console.Out);

This example uses the Load method to load a document from an XmlReader:

XmlDocument xmlDoc = new XmlDocument();

XmlTextReader reader = new XmlTextReader("c:\\books.xml");

xmlDoc.Load(reader);

xmlDoc.Save(Console.Out);

The LoadXml method loads a documernt from the specified string. For

example

xmlDoc.LoadXml("<Record> write something</ Record>");

Saving a Document

The Save methods saves a document to a specified location. The Save method takes a

paramenter of XmlWriter, XmlTextWriter or string type:

string filename = @"C:\ books.xml";

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(filename);

XmlTextWriter writer = new XmlTextWriter("c:\\ domtest.Xml", null);

writer.Formatting = Formatting.Indented;

xmlDoc.Save(writer);

You can also use a filename or Console.Out to save output as file or on the console:

xmlDoc.Save("c:\\ domtest. Xml");

xmlDoc.Save(Console.Out);

The XmlDocumentFragment class

Usually, you would use this class when you need to insert a small fragment of an XML document

or node into a document. This class also comes from XmlNode. Because this class is derived

from XmlNode, it has the same tree node traverse, insert, remove, and replace capabilities.

You usually create this class instance by calling Xml Document’s

CreateDocumentFragment method. The InnerXml represents the children of this node.

Listing 6-16 shows an example of how to create XmlDocumentFragment and load a small piece

of XML data by setting its InnerXml property.

Listing 6-16. XmlDocumentFragment sample

//open an XML file

string filename = @"c:\ books.xml";

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(filename);

// Create a document fragment.

XmlDocumentFragment docFrag = xmlDoc.CreateDocumentFragment();

// Set the contents of the document Fragment.

docFrag.InnerXml = "<Record> write something</ Record>";

// Display the document fragment.

Console.WriteLine(docFrag.InnerXml);

You can use XmlNode methods to add, remove, and replace data. Listing 6-17 appends a node

in the document fragment.

Listing 6-17. Appending in an XML document fragment

XmlDocument doc = new XmlDocument();

doc.LoadXml("<book genre = ’programming’> " +

"<title> ADO.NET programming </ title> " + "</book>");

// Get the root node

XmlNode root = doc.DocumentElement;

// Create a new node.

XmlElement newbook = doc.CreateElement("price");

newbook.InnerText = "44.95";

// Add the node to the document.

root.AppendChild(newbook);

doc.Save(Console.Out);

The Xml Element Class

An XmlElement class object represents an element in a document. This class comes from the

XmlLinkedNode class, which comes from XmlNode (see figure 6-8).

Figure 6-8. xml element inheritance

The XmlLinkedNode has two useful properties: NextSibing and previousSibling. As

their names indicate, these properties return the next and previous nodes of an XML document‟s
current node.

The XmlElement class implements and overrides some useful methods for adding and removing

attributes and element (see table 6-7).

Table 6-7. Some xml element methods

METHOD DESCRIPTION
GetAttribute Returns the attribute value
HasAttribute Checks if a node has the specified attribute
RemoveAll Removes all the children and attributes of the current node
RemoveAllAttributes, Removes all attributes and specified attributes from an element

RemoveAttribute respectively
RemoveAttributeAt Removes the attribute node with the specified index from the

attribute collection
RemoveAttributeNode Removes an XmlAttribute
SetAttribute Sets the value of the specified attribute
SetAttribute Node Adds a new xml Attribute

In the later examples. I‟ll show you how you can use these methods in your programs to get and
set XML element attributes.

Adding Nodes to a Document

You can use the AppendChild method to add to an existing document. The AppendChild
method takes a single parameter of XmlNode type. The XmlDocument’s

Createxxx methods can create different types of nodes. For example, the CreateComment and

CreateElement methods create comment and element node types. Listing 6-18 shows an

example of adding two nodes to a document.

Listing 6-18. Adding nodes to a document

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.LoadXml("<Record> some value </Record>");

// Adding a new comment node to the document

XmlNode node1 = xmlDoc.CreateComment("DOM Testing sample");

xmlDoc.AppendChild(node1);

// Adding a First Name to the documentt

node1 = xmlDoc.CreateElement("First Name");

node1.InnerText = "Mahesh";

xmlDoc.DocumentElement.AppendChild(node1);

xmlDoc.Save(Console.Out);

Getting the Root Node

The DocumentElement method of the XmlDocument class (inherited from XmlNode) returns

the root node of a document. The following example shows you how to get the root of a document
(see listing 6-19).

Listing 6-19. Getting root node of a document

string filename = @"c: \books.xml";

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(filename);

XmlElement root = xmlDoc.DocumentElement;

Removing and Replacing Nodes

The RemoveAll method of the XmlNode class can remove all elements and attributes of a

node. The RemoveChild removes the specified child only. The following example calls

RemoveAll to remove all elements had attributes. Listing 6-20 calls RemoveAll to remove all

item of a node.

Listing 6-20. Removing all item of a node

public static void Main()

{

// Load a document fragment

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.LoadXml("<book genre =’programming’>" +

"<title> ADO.NET programming </title> </book>");

XmlNode root = xmlDoc.DocumentElement;

Console.WriteLine("XML Document Fragment");

Console.WriteLine("= = = = = = = = = = = ");

xmlDoc.Save(Console.Out);

Console.WriteLine();

Console.WriteLine("-----------");

Console.WriteLine("XML Document Fragment Remove All");

Console.WriteLine("= = = = = = = = = = =");

// Remove all attribute and child nodes.

root.RemoveAll();

// Display the contents on the console after

// Removing elements and attributes

xmlDoc.Save(Console.Out);

}

NOTE: You can apply the Remove All method on the books.xml files to delete all the data, but
make sure to have backup copy first!

Listing 6-21 shows how to delete all the item of books. Xml

Listing 6-21.CcallingRemoveAll for books.Xml

public static void Main()

{

string filename = "c:\\ books.Xml";

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(filename);

XmlNode root = xmlDoc.DocumentElement;

Console.WriteLine("XML Document Fragment");

Console.WriteLine("= = = = = = = = = = = ");

xmlDoc.Save(Console.Out);

Console.WriteLine();

Console.WriteLine("- - - - - - - - - ");

Console.WriteLine("XML Document Fragment After RemoveAll");

Console.WriteLine("= = = = = = = = = = = = ");

//Remove all attribute and child nodes.

root.RemoveAll();

// Display the contents on the console after

// Removing elements and attributes

xmlDoc.Save(Console.Out);

}

The ReplaceChild method replaces an old child with a new child node. In Listing 6-22,

ReplaceChild replaces root Node; Last Child with xmlDocFrag.

Listing 6-22 Replace Child method sample

string filename = @"C:\books.xml";

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(filename);

XmlElement root = xmlDoc.DocumentElement;

XmlDocumentFragment xmlDocFragment = xmlDoc.CreateDocumentFragment();

xmlDocFragment.InnerXml =

"<Fragment><SomeData>Fragment Data</SomeData></ Fragment>";

XmlElement rootNode = xmlDoc.DocumentElement;

//Replace xmlDocFragment with rootNode.LastChild

rootNode.ReplaceChild(xmlDocFragment, rootNode. LastChild);

xmlDoc.Save(Console.Out);

Inserting XML Fragments into an XML Document

As discussed previously, the XmlNode class is useful for navigating through the nodes of a

document. It also provides other methods to insert XML fragments into a document. For instance,

the InsertAfter method inserts a document or element after the current node. This method

takes two arguments. The first argument is an XmlDocumentFragment object, and the second

argument is the position of where you want to insert the fragment. As discussed earlier in this

article, you create an XmlDocumentFragment class object by using the

CreateDocumentFragment method of the XmlDocument class. Listing 6-23 inserts an XML

fragment into a document after the current node using InsertAfter.

Listing 6-23. Inserting an XML fragment into a document

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(@"C:\\ books.Xml");

XmlDocumentFragment xmlDocFragment = xmlDoc.CreateDocumentFragment();

xmlDocFragment.InnerXml =

"< Fragment >< Some Data> Fragment Data</ Some Data> </ Fragment>";

XmlNode aNode = xmlDoc.DocumentElement.FirstChild;

aNode.InsertAfter(xmlDocFragment, aNode.LastChild);

xmlDoc.Save(Console.Out);

Adding Attributes to a Node

You use the SetAttributeNode method of xmlElement to add attributes to an element, which

is a Node. The XmlAttribute represents an XML attribute. You create an instance of

XmlAttribute by calling CreateAttribute of XmlDocument. After that you call an xml

Element’s Set Attribute method to set the attribute of an element. Finally, you append this

new item to the document (see listing 6-24).

Listing 6-24. Adding a node with attributes

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load (@"c:\\books.Xml");

XmlElement newElem = xmlDoc.CreateElement("NewElement");

XmlAttribute newAttr = xmlDoc.CreateAttribute("NewAttribute");

newElem.SetAttributeNode(newAttr);

// add the new element to the document

XmlElement root = xmlDoc.DocumentElement;

root.AppendChild(newElem);

xmlDoc.Save(Console.Out);

Transformation and XSLT

Extensible Stylesheet Language (XSL) is a language for expressing stylesheets. Stylesheets

format XML documents in a way so that the XML data can be presented in a certain structure in a
browser or other media such as catalogs books and so on.

The XML stylesheet processor reads an XML document (Called an XML source tree) and
stylesheet, and it presents the document data in an XML tree format. This processing is XSL
Transformation (XSLT). See figure 6-9.

Figure 6-9. XSL transformation

The result tree generated after XML transformation contains element and attribute nodes. The
result tree is also called an element –attribute or tree. In this tree, an object is an XML element,
and properties are attribute- value pairs.

The XSL stylesheet plays a vital role in the XSLT process. A stylesheet contains a set of tree
construction rules, which have two parts. The first part is a pattern of elements in the source tree,
and the second is a template for the result tree. The XSL parser reads the pattern and elements
from the source tree and then generates results according to the result tree template.

XSLT in .NET

In the .NET Framework, the XslTransform class implements the XSLT specification.

This class you defined in a separate namespace called System.Xml.Xsl. Make sure you add a

reference to this namespace before using the XslTransform class. You can use the

XsltException class to handle exceptions thrown by an XSLT transformation.

The Transform Method

The Transform Method of XslTransaforms data using loaded stylesheet and outputs the

result depending on the argument. This method has eight overloaded forms. You can write output

of Transform in the form of XmlWriter, stream, TextWriter, or XPathNavigator.

(I‟ll discuss XPathNavigator later in this article.)

Transforming a Document

Follow these steps to perform the transformation:

1. First you need to create an xslTransform object:

XslTransform xslt = new XslTransform();

2. Now, you load the stylesheet using the Load method:

xslt.Load("stylesheetFrmt. xsl");

3. Finally, call the Transform method of XslTransform:

xslt.Transform("xmlfile.xml", "file.html");

Example

Before you use XslTransform in your application, you need to add couple of namespace

references to your application. These namespace are Sysem.Xml, System.Xml.XPath, and

System.Xml.Xsl. (I‟ll discuss the X path namespace in more detail in the “Navigation in

HTML” section of this article.) This example uses the books.xsl schema file that comes with the
.NET SDK sample (see listing 6-25).

Listing 6-25. XSL Transformation sample code

// Create a new XslTransform object and load the stylesheet

XslTransform xslt = new XslTransform();

xslt.Load(@"c:\books.Xsl");

// Create a new XPathDocument and load the XML data to be transformed.

XPathDocument mydata = new XPathDocument(@"c:\ books .xml");

// Create an XmlTextWriter which output to the console.

XmlWriter writer = new XmlTextWriter(Console.Out);

// Transform the data and send the output to the console.

xslt.Transform(mydata, null, writer);

Connecting Data and XML via ADO .NET

So far in this article, you‟ve seen how to work with XML documents. In this section, you‟ll now
learn how to work with XML documents with the help of ADO.NET. There are two approaches to
work with XML and ADO. First, you can use ADO.NET to access XML documents. Second, you
can use XML and ADO.NET to access XML. Additionally, you can access a relational database
using ADO.NET and XML.NET.

Reading XML using a DataSet

In ADO.NET, you can access the data using the DataSet class. The DataSet class implements

methods and properties to work with XML documents. The following sections discuss methods
that read XML data.

The ReadXml Method

ReadXml is an overloaded method; you can use it to read a data stream, TextReader,

XmlReader, or an XML file and to store into a DataSet object, which can later be used to

display the data in a tabular format. The ReadXml method has eight overloaded forms. It can

read a text, string, stream, TextReader, XmlReader, and their combination formats. In the

following example, create a new DataSet object.

In the following example, create a new DataSet object and call the DataSet. ReadXml method

to load the books.xml file in a DataSet object:

 //Create a DataSet object

 DataSet ds = new DataSet();

 // Fill with the data

 ds.ReadXml("books.xml ");

Once you‟ve a DataSet object, you know how powerful it is. Make sure you provide the correct

path of books.xml.

NOTE: Make sure you add a reference to System.Data and the System.Data.Common

namespace before using DataSet and other common data components.

The ReadXmlSchema method

The ReadXMLSchema method reads an XML schema in a DataSet object. It has four

overloaded forms. You can use a Text Reader, string, stream, and XmlReader. The following

example shows how to use a file as direct input and call the ReadXmlSchema method to read the

file:

DataSet ds = new DataSet();

ds.ReadSchema (@"c:\books. xml");

The following example reads the file XmlReader and uses XmlTextReader as the input

of ReadXmlSchema:

//Create a dataset object

DataSet ds = new DataSet("New DataSet");

// Read xsl in an XmlTextReader

XmlTextReader myXmlReader = new XmlTextReader(@"c:\books.Xml");

// Call Read xml schema

ds.ReadXmlSchema(myXmlReader);

myXmlReader.Close();

Writing XML using a DataSet

Not only reading, the DataSet class contains methods to write XML file from a DataSet object

and fill the data to the file.

The WriteXml Method

The WriteXml method writes the current data (the schema and data) of a DataSet object to an

XML file. This is overloaded method. By using this method, you can write data to a file, stream,

TextWriter, or XmlWriter. This example creates a DataSet, fills the data for the DataSet,

and writes the data to an XML file.

Listing 6-26. WriteXml Method

using System;

using System.IO;

using System.Xml;

using System.Data;

namespace XmlAndDataSetsampB2

{

 class XmlAndDataSetSampCls

{

 public static void Main()

{

try

{

// Create a DataSet, namespace and Student table

// with Name and Address columns

DataSet ds = new DataSet("DS");

ds.Namespace = "StdNamespace";

DataTable stdTable = new DataTable("Student");

DataColumn col1 = new DataColumn("Name");

DataColumn col2 = new DataColumn("Address");

stdTable.Columns.Add(col1);

stdTable.Columns.Add(col2);

ds.Tables.Add(stdTable);

//Add student Data to the table

DataRow newRow; newRow = stdTable.NewRow();

newRow["Name"] = "Mahesh Chand";

newRow["Address"] = "Meadowlake Dr, Dtown";

stdTable.Rows.Add(newRow);

newRow = stdTable.NewRow();

newRow["Name"] = "Mike Gold";

newRow["Address"] = "NewYork";

stdTable.Rows.Add(newRow);

newRow = stdTable.NewRow();

newRow["Name"] = "Mike Gold";

newRow["Address"] = "New York";

stdTable.Rows.Add(newRow);

ds.AcceptChanges();

// Create a new StreamWriter

// I’ll save data in stdData.Xml file

System.IO.StreamWriter myStreamWriter = new

System.IO.StreamWriter(@"c:\stdData.xml");

// Writer data to DataSet which actually creates the file

ds.WriteXml(myStreamWriter);

myStreamWriter.Close();

}

catch (Exception e)

{

Console.WriteLine("Exception: {0}", e.ToString());

}

return;

}

}

}

You wouldn‟t believe the WriteXml method does for you. If you see the output stdData.xml

file, it generates a standard XML file that looks like listing 6-27.

Listing 6-27. WriteXml method output

-<DS xmlns="StdNamespace">

- <Student>

 <Name>Mahesh Chand</Name>

 <Address>Meadowlake Dr, Dtown</Address>

 </Student>

- <Student>

 <Name>Mike Gold</Name>

 <Address>NewYork</Address>

 </Student>

- <Student>

 <Name>Mike Gold</Name>

 <Address>New York</Address>

 </Student>

 </DS>

The Write xml schema method

This method writes DataSet structure to an XML schema. WriteXmlSchema has four

overloaded methods. You can write the data to a stream, text, TextWriter, or Xmlwriter.

Listing 6-28 uses XmlWriter for the output.

Listing 6-28. write xml schema sample

DataSet ds = new DataSet("DS");

ds.Namespace = "StdNamespace";

DataTable stdTable = new DataTable("Students");

DataColumn col1 = new DataColumn("Name");

DataColumn col2 = new DataColumn("Address");

stdTable.Columns.Add(col1);

stdTable.Columns.Add(col2);

ds.Tables.Add(stdTable);

// Add student Data to the table

DataRow newRow; newRow = stdTable.NewRow();

newRow["Name"] = "Mahesh chand";

newRow["Address"] = "Meadowlake Dr, Dtown";

stdTable.Rows.Add(newRow);

newRow = stdTable.NewRow();

newRow["Name"] = "Mike Gold";

newRow["Address"] = "NewYork";

stdTable.Rows.Add(newRow);

ds.AcceptChanges();

XmlTextWriter writer = new XmlTextWriter(Console.Out);

ds.WriteXmlSchema(writer);

Refer to the previous section to see how to create an XmlTextWriter object.

XmlDataDocument and XML

As discussed earlier in this article, the XmlDocument class provides DOM tree structure of XML

documents. The XmlDataDocument class comes from XmlDocument, which is comes from
XmlNode.

Figure 6-10 shows the XmlDataDocument hierarchy.

Figure 6-10. Xml Data Document hierarchy

Besides overriding the methods of XmlNode and XmlDocument, XmlDataDocument also

implements its own methods. The XmlDataDocument class lets you lead relational data using the

DataSet object as well as XML documents using the Load and LoadXml methods. As figure

6-11 indicates, you can use a DataSet to load relational data to an XmlDataDocument object

and use the Load or LoadXml methods to read an XML document. Figure 6-11 shows a

relationship between a Reader, Writer, DataSet, and XmlDataDocument.

Figure 6-11. Reading and writing data using xml Data Document

The XmlDataDocument class extends the functionality of XmlDocument and synchronizes it with

DataSet. As you know a DataSet is a powerful object in ADO.NET. As figure 6-11 shows, you

can take data from two different sources. First, you can load data from an XML document with the

help of XmlReader, and second, you can load data from relational data sources with the help of

database provides and DataSet. The neat thing is the data synchronization between these two

objects. That means if you update data in a DataSet object, you see results in the

XmlDataDocument object and vice versa. For example, if you add a record to a DataSet

object, the action will add one node to the XmlDataDocument object representing the newly

added record.

Once the data is loaded, you‟re allowed to use any operations that you were able to use on

XmlDocument objects. You can also use XmlReader and XmlWriter objects to read and

write the data.

The xmlData Documet class has property called DataSet. It returns the attached DataSet

object with XmlDataDocument. The DataSet property provides you a relational representation

of an XML document. Once you‟ve a DataSet object, you can do anything with it such as

attaching to a DataGrid.

You Can use all XML read and write methods of the DataSet object through the DataSet

property such as ReadXml, ReadXmlSchema, WriteXml, and WriteXml schema. Refer

to the DataSet read write methods in the previous section to see how these methods are used.

Loading Data using Load and LoadXml from the XmlDataDocument

You can use either the Load method or the LoadXml method to load an XML document. The

Load method takes a parameter of a filename string, a TextReader, or an XmlReader.

Similarly, you can use the LoadXml method. This method passes an XML file name to load the

XML file for example:

XmlDataDocument doc = new XmlDataDocument();

doc.Load("c:\\ Books.xml");

Or you can load an XML fragment, as in the following example:

XmlDataDocument doc = new XmlDataDocument();

doc.LoadsXml ("<Record> write something </Record>");

Loading Data Using a DataSet

A DataSet object has methods to read XML documents. These methods are

ReadXmlSchema and LoadXml. You use the Load or LoadXml methods to load an XML

document the same way you did directly from the XMLDataDocument. Again the Load method

takes a parameter of a filename string, TextReader, or XmlReader. Similarly, use the

LoadXml method to pass an XML filename through the dataset. For example:

XmlDataDocument doc = new XmlDataDocument();

doc.DataSet.ReadXmlSchema ("test. Xsd");

Or

doc.DataSet.ReadXml ("<Record> write something </Record>");

Displaying XML Data In a DataSet Format

As mentioned previously, you can get DataSet object from an XmlDataDocument object by

using its DataSet property. OK, now it‟s time to see how to do that. The next sample will show

you how easy is to display an XML document data in a DataSet format.

To read XML document in a dataset, first you read to document. You can read a document using

the ReadXml method of the DataSet object. The DataSet property of XmlDataDocument

represents the dataset of XmlDataDocument. After reading a document in a dataset, you can

create data views from the dataset, or you can also use a DataSet’sDefaultViewManager

property to bind to data-bound controls, as you can see in the following code:

XmlDataDocument xmlDatadoc = new XmlDataDocument();

xmlDatadoc.DataSet.ReadXml ("c:\\ xmlDataDoc.xml");

dataGrid1.DataSource = xmlDatadoc.DataSet.DefaultViewManager;

Listing 6-29 shows the complete code. As you can see from Listing 6-29, I created a new dataset,

Books, fill from the books.xml and bind to a DataGrid control using its DataSource property.

To make Listing 6-29 work, you need to create a Windows application and drag a DataGrid
control to the form. After doing that, you need to write the Listing 6-29 code on the Form1

constructor or Form load event.

Listing 6-29. XmlDataDocumentSample.cs

public Form1()

 {

 // Initialize Component and other code here

 // Create an XmlDataDocument object and read an XML

 XmlDataDocument xmlDatadoc = new XmlDataDocument();

 xmlDatadoc.DataSet.ReadXml("C:\\books.xml");

 // Create a DataSet object and fill with the dataset

 // of XmlDataDocument

 DataSet ds = new DataSet("Books DataSet");

 ds = xmlDatadoc.DataSet;

 // Attach dataset view to the Data Grid control

 dataGrid1.DataSource = ds.DefaultViewManager;

 }

The output of this program looks like figure 6-12. Only a few lines code, and you‟re all set. Neat
huh?

Figure 6-12. XmlDataDocumentSample.cs output

Saving Data from a DataSet to XML

You can save a DataSet data as an XML document using the Save method of

XmlDataDocument. Actually, XmlDataDocument comes from XmlDocument., and the

XmlDocument class defines the Save method. I‟ve already discussed that you can use Save

method to save your data in a string, stream, TextWriter, and XmlWriter.

First, you create a DataSet object and fill it using a DataAdapter. The following example reads

the Customers table from the Northwind Access database and fills data from the read to the
DataSet:

string SQLStmt = "SELECT * FROM Customers";

string ConnectionString =

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C: \\ Northwind.mdb";

// Create data adapter

OleDbDataAdapter da = new OleDbDataAdapter(SQLStmt, ConnectionString);

// create a new dataset object and fill using data adapter’s fill

method

DataSet ds = new DataSet();

da.Fill(ds);

Now, you create an instance of XmlDataDocument with the DataSet as an argument and call

the Save method to save the data as an XML document:

XmlDataDocument doc = new XmlDataDocument(ds);

doc.Save("C:\\XmlDataDoc.xml");

Listing 6-30 shows a complete program listing. You create an XmlDataDocument object with

dataset and call the save method to save the dataset data in an XML file.

Listing 6-30. Saving the dataset data to an XML document

using System;

using System.Data;

using System.Data.OleDb;

using System.Xml;

namespace DataDocsampB2

{

 class Class1

 {

 static void Main(string[] args)

 {

// create SQL Query

string SQLStmt = "SELECT * FROM Customers";

// Connection string

string ConnectionString =

"Provider = Microsoft.Jet.OLEDB.4.0;Data Source = C:\\

Northwind.mdb";

// Create data adapter

OleDbDataAdapter da = new OleDbDataAdapter(SQLStmt,

ConnectionString);

// create a new dataset object and fill using data

adapter’s fill method

DataSet doc = new DataSet();

// Now use SxlDataDocument’s Save method to save data as an

XML file XmlDataDocument doc = new XmlDataDocument(ds);

doc.Save("C:\\ XmlDataDoc.xml");

 }

 }

}

Traversing XML Documents

As you‟ve seen, XmlNode provides a way to navigate DOM tree with the help of its
FirstChild, ChildNodes, LastChild, PreviousNode, NextSibling, and

PreviousSibling methods.

Besides XmlNode, the XML.NET has two more classes, which help you navigate XML

documents. These classes are XPathDocument and XPathNavigator. The

System.Xml.Xpath namespace defines both these classes.

The XPath namespace contains classes to provide read-only, fast access to documents. Before

using these classes, you must add a reference of the System.Xml.Xpath namespace to your

application.

XPathNodeIterator, XPathExpression, and XPathException are other classes

defined in this namespace. The XPathNodeIterator class provides iteration capabilities to a

node. XPathExpression provides selection criteria to select a set of nodes from a document

based on those criteria, and the XPathExection class is an exception class. The

XPathDocument class provides a fast cache for XML document processing using XSLT and

XPath.

You use the XPathDocument constructor to create an instance of XmlPathDocument. It has

many overloaded constructors. You can pass an XmlReader, TextReader, or even direct

XML filenames.

The XPathNavigator class

The XPathNavigator class implements the functionality to navigate through a document. It

has easy-to-use and self-explanatory methods. You create an XPathNavigator instance by

calling XPpathDocument’s CreateNavigator method.

You can also create a XPathNavigator object by calling XmlDocument’s

CreateNavigator method. For example, the following code calls XmlDocument ‘s

CreateNavigator method to create a XPathNavigator object:

// Load books.xml document

XmlDocument xmlDoc = new XmlDocument();

XmlDoc.Load(@"c:\ books.xml");

// Create XPathNavigator object by calling create Navigator of

XmlDocument

XPathNavigator nav = xmlDoc.CreateNavigator();

NOTE: Don‟t forget to add a reference of the System.Xml .XPath to your project before using

any of its classes.

XPathNavigator contain methods and properties to move to the first, next, child, parent, and

root nodes to the document.

XPathNavigator move methods

Table 6-8 describes the XPathNavigator class‟s move methods. Some of these methods are
MoveToFirst, moveToNext , MoveToroot, MoveToFirstAttribute,

MoveToFirstChild, MoveToId, MoveToNamespace, MoveToPrevious,

MoveToParent and so on.

Table 6-8. XPathNavigator Memebers

MEMBER DESCRPITION
MoveToAttribute Moves to an attribute
MoveToFirst Moves to the first sibling of the current node
MoveToFirstAttribute Moves to the first attribute
MoveToFirstChild Moves to the first child of the current node
MoveToFirstNamespace Moves the X Path Navigator to the first namespace

node of the current element
MoveToId Moves to the node with specified ID
MoveToNamespace Moves to the specified namespace
MoveToNext Moves to the next node of the current node
MoveToNextAttribute Moves to the next Attribute
MoveToNextNamespace Moves to the Next namespace
MoveToParent Moves to the parent of the current node
MoveToPrevious Moves to the previous sibling of the current node
MoveToRoot Moves to the root node

So, with the help of these methods, you can move through a document as a DOM tree. Listing 6-

31 uses the MoveToRoot and MoveToFirstChild methods to move to the root node and

first child of the root node. Once you have a root, you can display corresponding information such
as name, value, node type, and so on.

Listing 6-31. Moving to root and first child nodes using XpathNavigator

// Load books.xml document

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(@"c:\ books.xml");

// Create XPathNavigator object by calling CreateNavigator of

XmlDocument

XPathNavigator nav = xmlDoc.CreateNavigator();

//Move to root node

nav.MoveToRoot();

string name = nav.Name;

Console.WriteLine("Root node info: ");

Console.WriteLine("Base URI" + nav.BaseURI.ToString());

Console.WriteLine("Name:" + nav.Name.ToString());

Console.WriteLine("Node Type: " + nav.NodeType.ToString());

Console.WriteLine("Node Value: " + nav.Value.ToString());

if (nav.HasChildren)

{

nav.MoveToFirstChild();

}

Now, using the MoveToNext and MoveToParent methods, you can move through the entire

document. Listing 6-32 Moves though an entire document and displays the data on the console.

The GetNodeInfo method displays a node‟s information, and you call it recursively.

Listing 6-32. Reading a document using XpathNavigator

static void Main(string[] args)

{

// Load books.xml document

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(@"c:\ books.xml");

// Create XPathNavigator object by calling CreateNavigator of

XmlDocument

XPathNavigator nav = xmlDoc.CreateNavigator();

// move to root node

nav.MoveToRoot();

string name = nav.Name;

Console.WriteLine("Root node info: ");

Console.WriteLine("Base URI" + nav.BaseURI.ToString());

Console.WriteLine("Name: " + nav.NodeType.ToString());

Console.WriteLine("Node Type: " + nav.NodeType.ToString());

Console.WriteLine("Node Value: " + nav.Value.ToString());

if (nav.HasChildren)

{

nav.MoveToFirstChild();

GetNodeInfo(nav);

}

}

private static void GetNodeInfo(XPathNavigator nav1)

{

Console.WriteLine("Name: " + nav1.Name.ToString());

Console.WriteLine("Node Type: " + nav1.NodeType.ToString());

Console.WriteLine("Node value: " + nav1.Value.ToString());

// If node has children, move to first child.

if (nav1.HasChildren)

{

nav1.MoveToFirstChild();

while (nav1.MoveToNext())

{

GetNodeInfo(nav1);

nav1.MoveToParent();

}

}

else /* Else move to next sibling */

{

nav1.MoveToNext();

GetNodeInfo(nav1);

}

}

Searching using XPathNavigator

Select, SelectChildren, SelectAncestors, and SelectDescendents are other

useful methods. Specifically, these methods are useful when you need to select a document‟s
items based on an XPath expression. For example, you could use one when selecting nodes for

the author tag only and so on. Now, say you want to search and display all <first- name> tag

nodes in the books.xml document.

In listing 6-33, you use XPathNavigator’s Select method to apply a criteria (all elements

with the author-name tag) to read and display all nodes.

Listing 6-33. Use of XPathIterator and Select

// Load books.xml document

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load (@" c:\ books.xml");

// Create XPathNavigator object by calling CreateNavigator of

XmlDocument

XPathNavigator nav = xmlDoc.CreateNavigator();

// Look for author’s first name

Console.WriteLine("Author First Name");

XPathNodeIterator itrator= nav.Select("descendant : : first-name");

while(itrator.MoveNext())

{

Console.WriteLine(itrator.Current.Value.ToString());

}

XML Designer in Visual Studio .NET

XML schemas play major in the .NET Framework, and visual studio .NET provides many tools
and utilities to work with XML. The.NET Framework uses XML to transfer data from one
application to another. XML schemas define the structure and validation rules of XML document.
You use XML schemas definition (XSD) language to define XML schemas

VS.NET provides an XML designer to work with schemas. In this section you‟ll see how you can
take advantage of the VS.NETXML designer and wizard features to work with XML Documents
and database.

Generating a New Schema

To generate a new schema, create a new Windows application using File > New > Project >
Visual C# Projects > Window Application. Just follow the steps outlined in the following sections.

Adding an Empty Schema

First, right-click on the project select Add > Add New Item (see Figure 6-13).

Figure 6-13. Adding a new item to the project

Now, from Templates, select the XML schema option, type your schema name, and click open
(see figure 6-14).

Figure 6-14. Selecting the XML schema template to add a schema to the project

This action launches XML Designer, now you‟ll see your XmlSchema1.xsd file, as shown in figure
6-15.

Figure 6-15. XML Designer

This action adds an empty XML schema to your project. If you click on the XML option at the
button of screen, you‟ll see your XML looks like the following:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="XMLSchema1"

targetNamespace="http://tempuri.org/XMLSchema1.xsd"

elementFormDefault="qualified"

xmlns="http://tempuri.org/XMLSchema1.xsd"

xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

</xs:schema>

As you see in figure 6-15, there are two options (blue links): Server Explorer and Toolbox.

Adding Schema Items

You can add schema items using the Toolbox option. Clicking the Toolbox link launches the
toolbox, as shown in figure 6-16.

Figure 6-16. XML schema toolbox

As you can see in figure 6-16, you can add an element, attribute, complexType, and other
schema items to the form by just dragging an item to XML Designer.

OK, now you‟ll learn how to add XML schema items to the schema and set their properties with
the help of XML Designer. First, add an element. To add an element to the schema, drag an
element from the toolbox. Now you can set its name and type in the designer. The default

element looks like figure 6-17, if you click on the Right-side column of the grid, you‟ll see a drop-
down list with element types. You can either select the type of an item from the list or define your
own type. Your type is called a user-defined type.

Figure 6-17. Adding a schema element and its type

Define your first element as bookstore with a custom type of bookstoretype. Figure 6-18

shows the bookstore element of bookstoretype.

Figure 6-18. Adding a new bookstore element

Now add a complexType by dragging a comlpexType to XML Designer (see figure 6-19).

Figure 6-19. A complex Type item

A complex Type item can contain other types, too. You can add items to a complexType in many
ways. You can either drag an item from the toolbox to the complexType or right-click on a
complexType and use the Add option and its sub options to add an item. Figure 6-20 shows
different items you can add to a complex type.

Figure 6-20. An item list can be added to a complex Type

You can delete items by right clicking and selecting Delete. You can also delete the entire
complexType or other schema items by right clicking on the header of an item or on the left side
of the item.

Now rename the added complexType name to book and add four element types: title, author,
price, and category. Now your complexType book looks like Figure 6-21.

Figure 6-21. The book complex Type and its elements

After that, adds one more complexType author with two elements: first-name and last-

name. Your final schema look like figure 6-22.

Figure 6-22. The author and book complexType in an XML schema

Now you can see XML code for this schema by clicking on the left-bottom XML button shown in
figure 6-23.

Figure 6-23. Viewing the XML for a schema

Listing 6-34 shows the schema XML code.

Listing 6-34. Xml generated using XML Designer

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="XMLSchema1"

targetNamespace="http://tempuri.org/XMLSchema1.xsd"

elementFormDefault="qualified"

xmlns="http://tempuri.org/XMLSchema1.xsd"

xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="bookstore" type="bookstoretype"></xs:element>

<xs:complexType name="book">

<xs:complexContent>

<xs:restriction base="bookType">

<xs:sequence>

<xs:element name="title" type="xs:string"></xs:element>

<xs:element name="price" type="xs:decimal"></xs:element>

<xs:element name="category" type="xs:string"></xs:element>

<xs:element name="author" type="authorName"></xs:element>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="author">

<xs:complexContent>

<xs:restriction base="authorName">

<xs:sequence>

<xs:element name="first-name" type="xs:string" />

<xs:element name="last-name" type="xs:string" />

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

</xs:schema>

Working with DataSets

Now you‟ll look at the Server Explorer option of XML Designer. Clicking on server Explorer
launches Server Explorer (see figure 6-24).

Figure 6-24. Server Explorer

In figure 6-24, you see that you can expand a database connection and see its tables and views.
You can drag these data objects (tables, views, stored procedures, columns) onto XML Designer.
For this example, drag the Employee table onto the designer. After dragging, your XML Designer
generates a schema for the table, which looks like figure 6-25.

Figure 6-25. XML Designer – generated schema

Listing 6-35 shows the generated XML code.

Listing 6-35. XML Schema generated for a database table

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="XMLSchema1"

targetNamespace="http://tempuri.org/XMLSchema1.xsd"

elementFormDefault="qualified"

xmlns="http://tempuri.org/XMLSchema1.xsd"

xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-

microsoft-com:xml-msdata">

<xs:element name="bookstotre">

<xs:complexType>

<xs:sequence />

</xs:complexType>

</xs:element>

<xs:complexType name="book">

<xs:complexContent>

<xs:restriction base="booktype">

<xs:sequence>

<xs:element name="titleelement1" type="xs:string"></xs:element>

<xs:element name="author" type="authername"></xs:element>

<xs:element name="price" type="xs:decimal"></xs:element>

<xs:element name="categary" type="xs:string"></xs:element>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="author">

<xs:complexContent>

<xs:restriction base="authorName">

<xs:sequence>

<xs:element name="first-name" type="xs:string"></xs:element>

<xs:element name="last-name" type="xs:string" />

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:element name="Document">

<xs:complexType>

<xs:choice maxOccurs="unbounded">

<xs:element name="Employees">

<xs:complexType>

<xs:sequence>

<xs:element name="EmployeeID" msdata:ReadOnly="true"

msdata:AutoIncrement="true" type="xs:int" />

<xs:element name="LastName" type="xs:string" />

<xs:element name="FirstName" type="xs:string" />

<xs:element name="Title" type="xs:string" minOccurs="0" />

<xs:element name="TitleOfCourtesy" type="xs:string" minOccurs="0" />

<xs:element name="BirthDate" type="xs:dateTime" minOccurs="0" />

<xs:element name="HireDate" type="xs:dateTime" minOccurs="0" />

<xs:element name="Address" type="xs:string" minOccurs="0" />

<xs:element name="City" type="xs:string" minOccurs="0" />

<xs:element name="Region" type="xs:string" minOccurs="0" />

<xs:element name="PostalCode" type="xs:string" minOccurs="0" />

<xs:element name="Country" type="xs:string" minOccurs="0" />

<xs:element name="HomePhone" type="xs:string" minOccurs="0" />

<xs:element name="Extension" type="xs:string" minOccurs="0" />

<xs:element name="Photo" type="xs:base64Binary" minOccurs="0" />

<xs:element name="Notes" type="xs:string" minOccurs="0" />

<xs:element name="ReportsTo" type="xs:int" minOccurs="0" />

<xs:element name="PhotoPath" type="xs:string" minOccurs="0" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

<xs:unique name="DocumentKey1" msdata:PrimaryKey="true">

<xs:selector xpath=".//mstns:Employees" />

<xs:field xpath="mstns:EmployeeID" />

</xs:unique>

</xs:element>

</xs:schema>

Generating ADO.NET Typed DataSet from a Schema

There may be occasions when other applications will generate XML schemas and your
application needs to use them to access databases. You can generate a typed dataset from an

existing schema. But before generating Dataset option generates a typed DataSet for an XML

schema. But before generating a DataSet you need to add schema to the project.

Adding an Existing schema to project

Now you‟ll see how you can generate a DataSet object from an existing schema. To test this. I

created a new Windows application project. You can use the Employee table schema generated
in the previous section. To add an existing schema to the project, right-click on the project and
select Add > Add Existing Item and browse for the schema (see figure 6-26).

Figure 6-26. Adding an existing schema to a project

If your schema name was different, select that schema and click open (see figure 6-27).

Figure 6-27. Browsing for schema

This action adds a schema to the current project. You can also add an XML schema by dragging
a database table onto XML Designer.

Generating a Typed Data Set from a schema

Generating a typed dataset from a schema is pretty simple. Right–click on XML Designer and
select the Generate Dataset option (see figure 6-28).

Figure 6-28. Generate Data set option of XML Designer

This action generates a DataSet class and adds it to your project. If you look in your Class

Wizard, you use the Document class derived from DataSet and its members. The Document

class looks like figure 6-29 in the Class View.

Figure 6-29. DataSet-derived class in the Class View

NOTE: The Generate Data Set option may not generate a Data Set if the XML schema is not
designed properly.

Once you‟ve a DataSet object, you can use it the way you want.

Summary

This article covered XML syntax as well the uses of XML on the .NET platform. You learned
about the DOM structure and DOM node types. You learned how XML is represented in .NET

through classes such as XmlNode, XmlAttribute, XmlElement, and XmlDocument.

You also learned how to read and write to these structures using the XmlReader and

XmlWriter classes. Also discussed was the navigation in an XML node structure using

XmlPathNavigator. Most importantly, you learned how XML applies to ADO.NET and how to

use a DataSet to read and write data with XML. Visual Studio .NET provides XML Designer to

work with XML. Using XML Designer, you can generate XML schema, which later can be used to
generate typed datasets.

