library(languageR)
affixes.pr=prcomp(affixProductivity[, 1:(ncol(affixProductivity)-3)])
summary(affixes.pr)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 1.8598 1.1068 0.70441 0.53953 0.53201 0.4343
## Proportion of Variance 0.5117 0.1812 0.07341 0.04306 0.04187 0.0279
## Cumulative Proportion 0.5117 0.6929 0.76631 0.80937 0.85124 0.8791
## PC7 PC8 PC9 PC10 PC11 PC12
## Standard deviation 0.40953 0.37780 0.33030 0.29524 0.2574 0.22698
## Proportion of Variance 0.02481 0.02112 0.01614 0.01289 0.0098 0.00762
## Cumulative Proportion 0.90396 0.92507 0.94121 0.95411 0.9639 0.97153
## PC13 PC14 PC15 PC16 PC17 PC18
## Standard deviation 0.21133 0.1893 0.16169 0.15029 0.12654 0.11258
## Proportion of Variance 0.00661 0.0053 0.00387 0.00334 0.00237 0.00187
## Cumulative Proportion 0.97814 0.9834 0.98731 0.99065 0.99302 0.99489
## PC19 PC20 PC21 PC22 PC23 PC24
## Standard deviation 0.1039 0.08699 0.07419 0.06736 0.05853 0.04292
## Proportion of Variance 0.0016 0.00112 0.00081 0.00067 0.00051 0.00027
## Cumulative Proportion 0.9965 0.99761 0.99842 0.99909 0.99960 0.99987
## PC25 PC26 PC27
## Standard deviation 0.02604 0.009769 0.008717
## Proportion of Variance 0.00010 0.000010 0.000010
## Cumulative Proportion 0.99997 0.999990 1.000000
affixes.pr$rotation
## PC1 PC2 PC3 PC4 PC5
## semi 1.875312e-03 -0.001359615 0.003074151 -0.0033841237 0.001961489
## anti -3.107270e-04 -0.002017771 -0.002695399 0.0005929162 -0.006636960
## ee -1.993040e-03 0.001106277 -0.017102260 -0.0033997410 -0.000429759
## ism 8.725181e-03 -0.046360929 0.046553003 0.0300832267 -0.012171792
## ian -4.593769e-02 -0.008605163 -0.010271978 -0.0937441773 0.241344357
## ful 3.347643e-02 0.013734791 0.010000845 -0.0966573851 0.248157866
## y 1.113181e-01 -0.043908360 -0.276324337 -0.5719405630 0.086747487
## ness 2.972806e-02 -0.112768134 0.700249340 -0.1374734621 -0.141729635
## able 8.456900e-03 -0.124364821 0.012313097 0.1119376764 0.015389530
## ly 9.729028e-01 -0.111160032 -0.020500850 0.1585457448 0.034857040
## unV 5.078341e-05 0.033425929 0.002037908 -0.0449135789 -0.021788145
## unA 1.647504e-03 -0.337165686 0.192049136 -0.4319886594 0.462189563
## ize -6.303858e-03 -0.077171774 -0.019778883 0.0736904914 -0.100657003
## less 9.495879e-03 0.051508994 0.099912048 -0.1273232494 0.012713416
## erA -2.141536e-02 -0.026346485 -0.376872746 -0.0570708530 -0.191908015
## erC 5.524124e-02 0.158605207 -0.369972098 -0.1482438855 0.216123725
## ity -7.730744e-04 -0.271729192 0.097462804 0.2092729105 0.078190397
## super -4.131613e-03 -0.030279913 -0.033512823 0.0571881743 -0.030764025
## est -8.747446e-02 0.175182257 0.014972126 0.4641180439 0.695068867
## ment -2.542832e-02 -0.150300104 -0.030137002 0.0806984248 -0.153825374
## ify -4.026137e-03 -0.016548957 0.006315785 0.0323633181 -0.009861479
## re -2.084914e-02 -0.107424908 -0.175795645 -0.0082273109 -0.050206266
## ation -1.527683e-01 -0.740869274 -0.243391025 0.2466726905 -0.011412316
## in. -3.011778e-03 -0.327921393 0.020862277 -0.1687605397 0.135894804
## ex -8.749677e-03 -0.079438906 -0.021233282 0.0315378395 -0.044780593
## en -2.962530e-02 -0.050469827 0.026466711 -0.0362843972 -0.018142553
## be -9.341994e-03 0.027067570 0.018562638 0.0039703018 0.074775635
## PC6 PC7 PC8 PC9 PC10
## semi -0.003225013 0.006653367 -0.003470552 0.002251530 -0.004618313
## anti -0.004194566 0.008393698 0.002689386 0.001300376 0.002076167
## ee 0.011941281 0.039256550 -0.015375732 -0.040496522 -0.019725594
## ism -0.027983324 0.003930176 -0.001045421 0.020678864 0.009417679
## ian -0.188370272 0.059309527 0.034810384 0.159634035 0.023168465
## ful -0.089418213 -0.300742548 -0.158172733 -0.250511252 -0.210429940
## y 0.644219470 0.225587873 -0.188802078 -0.161466243 -0.032612775
## ness 0.304951252 -0.443547497 -0.144747788 0.060323207 -0.043454176
## able -0.006009694 -0.145859146 -0.006325395 -0.235348015 0.470837889
## ly -0.052991909 0.011959280 -0.008432049 0.022764443 -0.055567344
## unV -0.109360695 -0.002974983 0.087665975 -0.028417539 -0.068085658
## unA -0.408284248 -0.031371334 0.015488332 -0.228847844 0.108209986
## ize -0.094073117 0.028158650 0.123275342 -0.049307857 0.029930327
## less -0.066651163 -0.002395469 -0.091759714 0.251220449 -0.460730745
## erA -0.254706599 -0.337134471 -0.726781439 0.132479398 0.111008393
## erC 0.129446195 -0.622357913 0.450428021 0.233915584 0.164132007
## ity 0.189578284 -0.018677205 -0.108051709 -0.115447571 0.331659152
## super -0.030446223 0.050882269 -0.047779904 -0.017606744 0.051037168
## est 0.233669463 -0.009596281 -0.243064159 0.044988920 -0.176689093
## ment 0.044510063 -0.272830691 0.012365526 0.035675919 -0.332767817
## ify -0.004728370 0.043038561 -0.041456216 -0.029300945 -0.002627392
## re -0.159934804 -0.049883476 0.093560180 -0.467695411 -0.396803882
## ation 0.190912530 -0.046922483 0.080174969 0.033672934 -0.161348965
## in. -0.100797260 0.191541832 -0.013351380 0.625353391 0.024056357
## ex 0.020949450 -0.066871680 0.077807890 0.039977792 -0.037945732
## en -0.005986654 -0.083491293 0.205631804 -0.028878010 -0.134313024
## be -0.070682871 0.020059446 -0.124727518 -0.043761693 -0.008180225
## PC11 PC12 PC13 PC14 PC15
## semi -0.0005830455 -0.001536351 -0.0066451545 0.0083819503 0.0098560648
## anti 0.0074529566 -0.015738812 -0.0052495230 0.0001581935 -0.0100626043
## ee -0.0182669722 -0.039788767 0.0706545365 -0.0504359451 0.0410720372
## ism -0.0029522852 -0.072868125 0.0582714611 0.0205702961 -0.1701652271
## ian 0.1730915615 0.139969007 -0.1730601220 -0.3799975090 -0.4805290458
## ful 0.0704932475 0.208921748 -0.5675506282 0.0507389045 -0.1962519930
## y -0.0638670939 -0.062329716 0.0004008889 -0.0783880356 -0.0681247614
## ness 0.0737938651 0.179546544 0.1259532726 -0.1439787365 0.1267288938
## able -0.1706904381 0.007351129 0.1200547627 -0.5018201660 -0.1628609086
## ly 0.0593751673 -0.003500042 0.0136929976 -0.0152726707 0.0157985264
## unV -0.0475138511 0.292941398 -0.2486522138 0.1034888641 0.1042286602
## unA 0.0753079279 -0.325199628 0.1912346699 0.1499657635 0.1259483779
## ize -0.1431553850 -0.122829309 0.2503350557 -0.0051500763 -0.2219790915
## less -0.0771868716 0.070820122 0.4014470817 0.1377356452 -0.5389927391
## erA 0.0436132916 0.016215936 0.1358747681 0.0643745356 0.0817049652
## erC -0.0601093751 0.077055327 0.1372508988 0.0943771488 0.0005757566
## ity -0.4421078561 0.148308745 -0.0815250823 0.4983121277 -0.3382877496
## super -0.0441661711 -0.044253771 -0.0144974532 0.0663478382 -0.1071360224
## est -0.0614081746 -0.077377880 0.1684166846 -0.0824193331 0.1702646841
## ment -0.3527371116 -0.655978877 -0.2936364543 -0.1369067146 -0.0349040927
## ify -0.0566048178 0.005137527 -0.1208249997 0.0039563899 0.0386935231
## re -0.3979890594 0.390598759 0.2602659442 -0.2103582129 0.1699627345
## ation 0.4434342694 0.105893324 0.0397853762 0.0063402605 -0.0039350291
## in. -0.4355820826 0.203311789 -0.1384728740 -0.1462369952 0.2600218827
## ex -0.0311828545 -0.085929495 -0.0987381873 -0.2619261502 -0.1281324647
## en -0.0023577674 -0.037986953 -0.0386019728 0.3051718380 0.0904668526
## be -0.0896866743 0.036570906 -0.1170865550 -0.0114136222 0.0182162261
## PC16 PC17 PC18 PC19 PC20
## semi -0.0034943221 -0.015175256 -0.015900323 -0.0021499285 -0.0029091137
## anti 0.0340628721 -0.033762743 0.008902189 0.0004844268 -0.0177774665
## ee -0.0140155048 -0.022083095 0.015546727 -0.0682435957 -0.1476586611
## ism 0.0815390108 0.000663692 -0.136162955 0.0021573756 0.2444099735
## ian -0.5285651449 -0.208157219 0.247182365 -0.0862554266 0.0664386430
## ful 0.1823286223 0.051888963 -0.274744410 0.2787202201 -0.1448977137
## y -0.0077135333 -0.017675786 0.077030539 0.0728150587 0.0925406938
## ness -0.1111628855 -0.138461351 0.004440201 0.0485137064 0.1024000017
## able 0.1572226560 0.493110634 0.165167073 0.1652456948 -0.0698781698
## ly -0.0308152179 -0.007756679 0.045274023 -0.0034698346 0.0050315441
## unV 0.1219893403 0.147539667 0.233861056 -0.1640691325 0.4451511776
## unA 0.0497117905 -0.028109251 -0.015677669 -0.1287423610 0.0556721055
## ize 0.0329198653 -0.310872378 -0.140797676 0.4995398968 0.3165866026
## less 0.2244291063 0.343582027 0.028032950 -0.0620537117 -0.0489746422
## erA -0.0554265534 -0.096642988 0.161184444 -0.0021017013 0.0625842136
## erC -0.0003969055 -0.013145111 -0.114041134 -0.0472416777 0.0649685944
## ity -0.1110595559 -0.136248749 0.053910980 -0.2549062604 -0.0836559852
## super -0.0423045911 -0.196653644 -0.176218860 0.4229934625 0.1566180462
## est 0.0043360096 -0.050492012 0.096141044 0.0561389039 0.1086021056
## ment -0.2106510884 0.111535188 -0.007246188 -0.1086645839 0.0007835833
## ify -0.0183065107 0.241496797 -0.018899368 -0.1121654359 0.7050177302
## re -0.1707450917 -0.145269987 -0.027190255 -0.0887607399 -0.0370081249
## ation 0.0317621615 0.099956817 -0.054567436 0.0041234103 0.0157715941
## in. 0.0548080940 0.029703954 -0.092100532 0.1746861567 -0.0802673978
## ex 0.6332060609 -0.524076124 0.285007229 -0.2456731071 0.0347500153
## en -0.0897565705 0.059787299 0.736688334 0.4278062703 -0.0736235279
## be 0.2614781394 0.043618519 0.121391968 0.1512903790 -0.0410478228
## PC21 PC22 PC23 PC24 PC25
## semi 0.005525585 0.002143075 0.067800745 0.040525531 0.0375055986
## anti -0.063357613 0.003717218 -0.060577280 -0.084195185 0.1915222119
## ee 0.087806831 0.057761299 -0.133182645 0.553995947 -0.7643042117
## ism -0.328280553 -0.061890710 -0.010119828 0.751153043 0.4364939706
## ian -0.032533675 0.021291361 -0.110661154 -0.002799307 -0.0069163322
## ful -0.102040025 -0.055127472 0.219625659 0.028016726 -0.1080196413
## y 0.016901523 -0.073258379 -0.012996486 0.011367911 0.0332789922
## ness 0.017964869 0.009913134 -0.073261232 0.001656885 -0.0138725553
## able 0.106956991 -0.022840205 0.100133439 0.021385016 0.0296086195
## ly 0.003834049 0.002858145 -0.017093038 -0.008674870 -0.0027185264
## unV 0.482166635 -0.460252051 -0.155926607 0.111625998 0.0270914381
## unA 0.077667154 0.008990635 -0.004284443 -0.037391610 0.0101280032
## ize -0.154215888 -0.460698705 -0.018792568 -0.180967856 -0.2554321987
## less 0.115663458 0.064797013 0.023302226 -0.074563527 -0.0401466810
## erA -0.013725371 -0.053352946 0.053290110 0.020873131 -0.0002410297
## erC -0.009458144 0.084284178 -0.113120804 0.008400682 -0.0202726088
## ity -0.019212631 0.006670734 -0.011064221 -0.032916778 -0.0347015962
## super 0.621877496 0.512622365 -0.079150638 0.117466812 0.1418919468
## est 0.058046989 -0.088935826 0.052275244 0.017698460 0.0273945070
## ment 0.100981546 -0.080044434 -0.096548729 -0.015955600 0.0358323373
## ify -0.302378686 0.444305375 0.150297271 -0.152434936 -0.2625897498
## re -0.057842480 0.118150490 0.003794933 0.024291548 0.1066954713
## ation 0.017915408 -0.013902423 -0.099995243 -0.025529848 -0.0167781838
## in. -0.055007474 -0.007829463 0.111226881 0.042733686 -0.0108214757
## ex 0.027398435 0.146854460 0.174621057 -0.021998834 -0.0149071453
## en -0.140116820 0.118960646 0.176327725 0.117201910 0.0184824618
## be -0.248620341 0.143318790 -0.855390917 -0.100104147 0.0234089532
## PC26 PC27
## semi -0.9947246497 -0.0446758177
## anti -0.0440098474 0.9712419877
## ee -0.0228044988 0.1919355629
## ism 0.0458343941 -0.0406810472
## ian -0.0121324633 -0.0031918832
## ful 0.0148400629 0.0297843818
## y -0.0002280616 -0.0038573782
## ness -0.0054568031 0.0108489830
## able -0.0126693458 0.0183518106
## ly -0.0001082655 -0.0008857188
## unV -0.0089795482 0.0386326178
## unA 0.0049640483 -0.0034809176
## ize -0.0201988190 0.0153955227
## less -0.0119088925 0.0121044803
## erA 0.0028853219 0.0053997196
## erC -0.0132164054 0.0053034258
## ity -0.0018030238 0.0018057163
## super 0.0130069025 0.0128751685
## est 0.0041062810 0.0117086920
## ment -0.0051166593 -0.0045836532
## ify -0.0123368298 0.0480535650
## re 0.0071226608 -0.0095599515
## ation -0.0110111723 -0.0039686414
## in. 0.0151478593 0.0143734141
## ex 0.0106250881 -0.0316920304
## en 0.0069080148 0.0055343156
## be -0.0603289793 -0.0943449195
biplot(affixes.pr)
ilm=read.table("http://www.tlu.ee/~jaagup/andmed/ilm/harkutund.txt", header=TRUE, sep=",")
ilmtervik=ilm[complete.cases(ilm), ]
ilmskaleeritud=scale(ilmtervik[, 4:11])
k=prcomp(ilmskaleeritud)
summary(k)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 1.7837 1.4293 1.0324 0.9979 0.82393 0.18019 0.04724
## Proportion of Variance 0.3977 0.2554 0.1332 0.1245 0.08486 0.00406 0.00028
## Cumulative Proportion 0.3977 0.6531 0.7863 0.9108 0.99565 0.99971 0.99999
## PC8
## Standard deviation 0.009931
## Proportion of Variance 0.000010
## Cumulative Proportion 1.000000
k$rotation
## PC1 PC2 PC3 PC4 PC5
## PR1H 0.00711280 -0.04520461 -0.88020407 0.244841757 -0.40276082
## RH1H -0.27729574 0.22654218 -0.38762822 0.051695161 0.84758581
## TA1H 0.55463758 0.04083873 -0.05493746 0.024279913 0.14364667
## TAN1H 0.55333642 0.03865013 -0.05906746 0.025653150 0.15963933
## TAX1H 0.55513765 0.04318208 -0.05437973 0.023313546 0.12647246
## WD1H 0.02789537 0.05062730 -0.24291668 -0.964852939 -0.05628217
## WS1H -0.00667084 -0.68633713 -0.01997501 0.002043071 0.17555236
## WSX1H 0.01587383 -0.68409581 -0.07818826 -0.068144239 0.15258220
## PC6 PC7 PC8
## PR1H 0.030932945 -0.0048919620 0.0014858223
## RH1H -0.005203612 0.0207052225 0.0004310549
## TA1H 0.007302212 -0.0033944971 0.8163347986
## TAN1H 0.033142509 -0.7001888190 -0.4139207687
## TAX1H -0.017682326 0.7126601984 -0.4028204443
## WD1H 0.059508419 -0.0001720885 0.0002346669
## WS1H 0.704745933 0.0317497209 0.0003994812
## WSX1H -0.705225908 -0.0194634238 -0.0004187381
barplot(k$sdev**2)
plot(k)
biplot(k)
ilmskaleeritud=scale(ilmtervik[(ilmtervik$Kuu==7) & (ilmtervik$Paev==3), 5:11])
k=prcomp(ilmskaleeritud)
summary(k)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 2.483 0.74396 0.47392 0.17631 0.11807 0.09702
## Proportion of Variance 0.881 0.07907 0.03209 0.00444 0.00199 0.00134
## Cumulative Proportion 0.881 0.96003 0.99211 0.99655 0.99855 0.99989
## PC7
## Standard deviation 0.02766
## Proportion of Variance 0.00011
## Cumulative Proportion 1.00000
k$rotation
## PC1 PC2 PC3 PC4 PC5
## RH1H -0.3890082 -0.05022296 0.50203127 -0.17518054 -0.7502292906
## TA1H 0.3980416 0.15273899 -0.18405087 -0.10876760 -0.3354825322
## TAN1H 0.3965527 0.16790896 -0.19020260 0.03521465 -0.3284229374
## TAX1H 0.3962639 0.17072795 -0.19841355 -0.16308611 -0.3136454224
## WD1H 0.2841592 -0.95194053 -0.03886784 -0.02049261 -0.1044464054
## WS1H 0.3841292 0.07589773 0.56059536 0.72165370 -0.0001891517
## WSX1H 0.3842586 0.06968334 0.56812591 -0.63909329 0.3278159818
## PC6 PC7
## RH1H 0.0145207103 -0.01928264
## TA1H -0.0115398474 0.81230958
## TAN1H 0.7193174029 -0.38968741
## TAX1H -0.6801717762 -0.43226703
## WD1H 0.0005068976 -0.01492712
## WS1H -0.1060674567 0.01956295
## WSX1H 0.0914015722 -0.02155774
biplot(k)
affixes.fac=factanal(affixProductivity[, 1:27], factors=3)
affixes.fac
##
## Call:
## factanal(x = affixProductivity[, 1:27], factors = 3)
##
## Uniquenesses:
## semi anti ee ism ian ful y ness able ly unV unA
## 0.865 0.909 0.934 0.244 0.705 0.688 0.964 0.633 0.713 0.798 0.848 0.324
## ize less erA erC ity super est ment ify re ation in.
## 0.436 0.803 0.851 0.775 0.414 0.749 0.881 0.640 0.941 0.730 0.094 0.406
## ex en be
## 0.681 0.837 0.855
##
## Loadings:
## Factor1 Factor2 Factor3
## semi 0.348
## anti 0.278
## ee -0.246
## ism 0.493 0.467 0.543
## ian 0.229 -0.490
## ful -0.522 0.196
## y -0.184
## ness 0.169 0.580
## able 0.463 0.265
## ly -0.141 0.116 0.411
## unV -0.218 -0.322
## unA 0.698 -0.273 0.337
## ize 0.419 0.621
## less -0.196 -0.170 0.360
## erA -0.383
## erC -0.323 -0.237 -0.254
## ity 0.701 0.277 0.135
## super 0.259 0.377 -0.202
## est -0.180 -0.266 -0.126
## ment 0.486 0.324 -0.139
## ify 0.196 0.126
## re 0.359 -0.372
## ation 0.888 0.211 -0.269
## in. 0.758 0.134
## ex 0.476 0.284 -0.108
## en 0.382 -0.127
## be -0.142 -0.336 0.107
##
## Factor1 Factor2 Factor3
## SS loadings 4.186 2.242 1.853
## Proportion Var 0.155 0.083 0.069
## Cumulative Var 0.155 0.238 0.307
##
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 308.11 on 273 degrees of freedom.
## The p-value is 0.0707
loadings(affixes.fac)
##
## Loadings:
## Factor1 Factor2 Factor3
## semi 0.348
## anti 0.278
## ee -0.246
## ism 0.493 0.467 0.543
## ian 0.229 -0.490
## ful -0.522 0.196
## y -0.184
## ness 0.169 0.580
## able 0.463 0.265
## ly -0.141 0.116 0.411
## unV -0.218 -0.322
## unA 0.698 -0.273 0.337
## ize 0.419 0.621
## less -0.196 -0.170 0.360
## erA -0.383
## erC -0.323 -0.237 -0.254
## ity 0.701 0.277 0.135
## super 0.259 0.377 -0.202
## est -0.180 -0.266 -0.126
## ment 0.486 0.324 -0.139
## ify 0.196 0.126
## re 0.359 -0.372
## ation 0.888 0.211 -0.269
## in. 0.758 0.134
## ex 0.476 0.284 -0.108
## en 0.382 -0.127
## be -0.142 -0.336 0.107
##
## Factor1 Factor2 Factor3
## SS loadings 4.186 2.242 1.853
## Proportion Var 0.155 0.083 0.069
## Cumulative Var 0.155 0.238 0.307
plot(loadings(affixes.fac))
affixes.fac=factanal(affixProductivity[, 1:27], factors=4, rotation="promax")
affixes.fac
##
## Call:
## factanal(x = affixProductivity[, 1:27], factors = 4, rotation = "promax")
##
## Uniquenesses:
## semi anti ee ism ian ful y ness able ly unV unA
## 0.842 0.915 0.923 0.278 0.614 0.618 0.679 0.572 0.690 0.035 0.857 0.301
## ize less erA erC ity super est ment ify re ation in.
## 0.449 0.789 0.796 0.615 0.403 0.748 0.799 0.636 0.927 0.685 0.120 0.391
## ex en be
## 0.681 0.791 0.801
##
## Loadings:
## Factor1 Factor2 Factor3 Factor4
## semi 0.153 0.224 0.260
## anti 0.303
## ee -0.254
## ism 0.584 0.214 0.620 0.184
## ian -0.453 0.449 -0.339
## ful -0.554 0.342 0.219
## y -0.221 0.177 -0.330 0.422
## ness 0.104 0.103 0.649
## able 0.396 0.295 0.120
## ly 0.124 0.976
## unV -0.377
## unA -0.113 0.803 0.226
## ize 0.737 0.106
## less -0.247 0.320
## erA -0.447
## erC -0.360 -0.108 -0.486 0.225
## ity 0.490 0.473 0.218
## super 0.460 -0.101
## est -0.305 -0.320
## ment 0.472 0.254
## ify 0.197 0.155
## re 0.147 0.317 -0.397
## ation 0.476 0.650 -0.136 -0.188
## in. 0.172 0.709 0.101
## ex 0.419 0.278
## en 0.315 -0.293
## be -0.387 -0.194
##
## Factor1 Factor2 Factor3 Factor4
## SS loadings 3.482 2.711 1.944 1.750
## Proportion Var 0.129 0.100 0.072 0.065
## Cumulative Var 0.129 0.229 0.301 0.366
##
## Factor Correlations:
## Factor1 Factor2 Factor3 Factor4
## Factor1 1.00000 -0.0229 -0.00647 -0.0505
## Factor2 -0.02289 1.0000 0.05513 -0.2510
## Factor3 -0.00647 0.0551 1.00000 0.2098
## Factor4 -0.05054 -0.2510 0.20983 1.0000
##
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 269.71 on 249 degrees of freedom.
## The p-value is 0.175
plot(loadings(affixes.fac))
ilm=read.table("http://www.tlu.ee/~jaagup/andmed/ilm/harkutund.txt", header=TRUE, sep=",")
ilmtervik=ilm[complete.cases(ilm), ]
ilmskaleeritud=scale(ilmtervik[, 4:11])
t1=factanal(ilmskaleeritud, factors=3, rotation="promax")
t1
##
## Call:
## factanal(x = ilmskaleeritud, factors = 3, rotation = "promax")
##
## Uniquenesses:
## PR1H RH1H TA1H TAN1H TAX1H WD1H WS1H WSX1H
## 0.969 0.818 0.005 0.005 0.005 0.894 0.005 0.005
##
## Loadings:
## Factor1 Factor2 Factor3
## PR1H 0.165
## RH1H -0.364 -0.213
## TA1H 1.000
## TAN1H 0.999
## TAX1H 0.998
## WD1H 0.323
## WS1H 0.992 -0.112
## WSX1H 0.988 0.142
##
## Factor1 Factor2 Factor3
## SS loadings 3.130 2.011 0.164
## Proportion Var 0.391 0.251 0.021
## Cumulative Var 0.391 0.643 0.663
##
## Factor Correlations:
## Factor1 Factor2 Factor3
## Factor1 1.0000 0.03255 -0.10608
## Factor2 0.0325 1.00000 -0.00428
## Factor3 -0.1061 -0.00428 1.00000
##
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 28823.7 on 7 degrees of freedom.
## The p-value is 0
head(oldFrench)
## T30.16.00 T00.31.51 T16.00.31 T00.60.31 T16.00.33 T02.00.30
## Abe.2 11 2 1 6 3 13
## Abe.3 13 4 6 5 6 10
## Abe.4 7 1 4 2 5 9
## Abe.5 8 1 3 3 4 3
## Abe.6 7 1 6 1 1 8
## Abe.7 13 6 4 2 4 9
## T10.00.30 T00.60.43 T30.00.33 T10.00.31 T02.00.33 T10.00.33
## Abe.2 6 2 5 4 4 3
## Abe.3 4 2 3 3 4 5
## Abe.4 14 2 8 1 6 12
## Abe.5 8 1 8 3 7 9
## Abe.6 10 7 15 1 7 8
## Abe.7 14 1 10 11 12 8
## T16.00.60 T00.33.10 T30.00.60 T02.00.60 T10.00.60 T00.33.30
## Abe.2 1 5 6 8 9 15
## Abe.3 4 8 11 8 11 11
## Abe.4 1 4 4 4 13 14
## Abe.5 5 3 4 8 16 7
## Abe.6 1 8 7 7 4 10
## Abe.7 2 7 7 9 7 11
## T10.00.55 T00.33.31 T55.10.00 T60.10.00 T33.10.00 T51.10.00
## Abe.2 3 6 8 5 11 1
## Abe.3 6 6 7 6 9 1
## Abe.4 6 8 6 5 20 2
## Abe.5 5 8 4 3 7 2
## Abe.6 3 6 8 3 13 3
## Abe.7 7 8 6 14 10 6
## T31.10.00 T30.02.00 T30.10.00 T00.30.00 T10.02.00 T00.30.01
## Abe.2 5 6 14 17 3 2
## Abe.3 7 8 19 29 2 2
## Abe.4 4 9 22 35 2 2
## Abe.5 6 6 5 6 1 6
## Abe.6 2 8 12 8 6 10
## Abe.7 6 3 10 30 2 1
## T00.10.00 T00.30.10 T00.30.16 T30.15.00 T31.51.31
## Abe.2 5 15 2 9 12
## Abe.3 5 13 3 8 0
## Abe.4 8 12 2 4 7
## Abe.5 7 8 2 8 5
## Abe.6 12 8 2 11 1
## Abe.7 10 24 5 11 3
head(oldFrenchMeta)
## Textlabels Codes Author Topic Genre Region Year
## 1 Abe Abe.2 Meun Other prose R2 1325
## 2 Abe Abe.3 Meun Other prose R2 1325
## 3 Abe Abe.4 Meun Other prose R2 1325
## 4 Abe Abe.5 Meun Other prose R2 1325
## 5 Abe Abe.6 Meun Other prose R2 1325
## 6 Abe Abe.7 Meun Other prose R2 1325
oldFrench.ca=corres.fnc(oldFrench)
summary(oldFrench.ca)
##
## Call:
## corres(oldFrench)
##
## Eigenvalue rates:
##
## 0.1704139 0.1326913 0.06854973 0.05852097 0.05394474 0.04642929 ...
##
## Factor 1
##
## coordinates correlations contributions
## T30.16.00 -0.113 0.074 0.012
## T00.31.51 -0.560 0.464 0.103
## T16.00.31 -0.139 0.053 0.006
## T00.60.31 -0.122 0.050 0.006
## T16.00.33 -0.085 0.020 0.003
## T02.00.30 0.293 0.227 0.027
## ...
##
## Factor 2
##
## coordinates correlations contributions
## T30.16.00 0.119 0.082 0.017
## T00.31.51 0.205 0.062 0.018
## T16.00.31 0.255 0.179 0.024
## T00.60.31 0.162 0.090 0.014
## T16.00.33 -0.220 0.139 0.029
## T02.00.30 0.166 0.073 0.011
## ...
plot(oldFrench.ca)
plot(oldFrench.ca, rlabels=oldFrenchMeta$Genre)
head(variationLijk)
## nlfemaleHigh nlfemaleMid nlmaleHigh nlmaleMid vlfemaleHigh
## afhankelijk 1 1 3 4 1
## belachelijk 7 4 7 3 6
## dadelijk 8 13 6 10 2
## degelijk 1 1 1 1 1
## duidelijk 11 6 14 8 6
## eerlijk 6 9 9 5 5
## vlfemaleMid vlmaleHigh vlmaleMid
## afhankelijk 2 3 1
## belachelijk 4 3 7
## dadelijk 3 1 2
## degelijk 1 2 1
## duidelijk 5 13 6
## eerlijk 2 5 4
chisq.test(variationLijk)
## Warning in chisq.test(variationLijk): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: variationLijk
## X-squared = 575.35, df = 217, p-value < 2.2e-16
k=corres.fnc(variationLijk)
plot(k)
ilm=read.table("http://www.tlu.ee/~jaagup/andmed/ilm/harkutund.txt", header=TRUE, sep=",")
ilmtervik=ilm[complete.cases(ilm), ]
k=corres.fnc(ilmtervik[, 4:11])
plot(k, rlabels = ilmtervik$Kuu, rcex = 0.5)
k=corres.fnc(ilmtervik[ilmtervik$Kuu==7, 4:11])
plot(k, rlabels = substr(ilmtervik$Kell, 1, 2), rcex = 0.3)