library(languageR)
affixes.pr=prcomp(affixProductivity[, 1:(ncol(affixProductivity)-3)])
summary(affixes.pr)
## Importance of components:
##                           PC1    PC2     PC3     PC4     PC5    PC6
## Standard deviation     1.8598 1.1068 0.70441 0.53953 0.53201 0.4343
## Proportion of Variance 0.5117 0.1812 0.07341 0.04306 0.04187 0.0279
## Cumulative Proportion  0.5117 0.6929 0.76631 0.80937 0.85124 0.8791
##                            PC7     PC8     PC9    PC10   PC11    PC12
## Standard deviation     0.40953 0.37780 0.33030 0.29524 0.2574 0.22698
## Proportion of Variance 0.02481 0.02112 0.01614 0.01289 0.0098 0.00762
## Cumulative Proportion  0.90396 0.92507 0.94121 0.95411 0.9639 0.97153
##                           PC13   PC14    PC15    PC16    PC17    PC18
## Standard deviation     0.21133 0.1893 0.16169 0.15029 0.12654 0.11258
## Proportion of Variance 0.00661 0.0053 0.00387 0.00334 0.00237 0.00187
## Cumulative Proportion  0.97814 0.9834 0.98731 0.99065 0.99302 0.99489
##                          PC19    PC20    PC21    PC22    PC23    PC24
## Standard deviation     0.1039 0.08699 0.07419 0.06736 0.05853 0.04292
## Proportion of Variance 0.0016 0.00112 0.00081 0.00067 0.00051 0.00027
## Cumulative Proportion  0.9965 0.99761 0.99842 0.99909 0.99960 0.99987
##                           PC25     PC26     PC27
## Standard deviation     0.02604 0.009769 0.008717
## Proportion of Variance 0.00010 0.000010 0.000010
## Cumulative Proportion  0.99997 0.999990 1.000000
affixes.pr$rotation
##                 PC1          PC2          PC3           PC4          PC5
## semi   1.875312e-03 -0.001359615  0.003074151 -0.0033841237  0.001961489
## anti  -3.107270e-04 -0.002017771 -0.002695399  0.0005929162 -0.006636960
## ee    -1.993040e-03  0.001106277 -0.017102260 -0.0033997410 -0.000429759
## ism    8.725181e-03 -0.046360929  0.046553003  0.0300832267 -0.012171792
## ian   -4.593769e-02 -0.008605163 -0.010271978 -0.0937441773  0.241344357
## ful    3.347643e-02  0.013734791  0.010000845 -0.0966573851  0.248157866
## y      1.113181e-01 -0.043908360 -0.276324337 -0.5719405630  0.086747487
## ness   2.972806e-02 -0.112768134  0.700249340 -0.1374734621 -0.141729635
## able   8.456900e-03 -0.124364821  0.012313097  0.1119376764  0.015389530
## ly     9.729028e-01 -0.111160032 -0.020500850  0.1585457448  0.034857040
## unV    5.078341e-05  0.033425929  0.002037908 -0.0449135789 -0.021788145
## unA    1.647504e-03 -0.337165686  0.192049136 -0.4319886594  0.462189563
## ize   -6.303858e-03 -0.077171774 -0.019778883  0.0736904914 -0.100657003
## less   9.495879e-03  0.051508994  0.099912048 -0.1273232494  0.012713416
## erA   -2.141536e-02 -0.026346485 -0.376872746 -0.0570708530 -0.191908015
## erC    5.524124e-02  0.158605207 -0.369972098 -0.1482438855  0.216123725
## ity   -7.730744e-04 -0.271729192  0.097462804  0.2092729105  0.078190397
## super -4.131613e-03 -0.030279913 -0.033512823  0.0571881743 -0.030764025
## est   -8.747446e-02  0.175182257  0.014972126  0.4641180439  0.695068867
## ment  -2.542832e-02 -0.150300104 -0.030137002  0.0806984248 -0.153825374
## ify   -4.026137e-03 -0.016548957  0.006315785  0.0323633181 -0.009861479
## re    -2.084914e-02 -0.107424908 -0.175795645 -0.0082273109 -0.050206266
## ation -1.527683e-01 -0.740869274 -0.243391025  0.2466726905 -0.011412316
## in.   -3.011778e-03 -0.327921393  0.020862277 -0.1687605397  0.135894804
## ex    -8.749677e-03 -0.079438906 -0.021233282  0.0315378395 -0.044780593
## en    -2.962530e-02 -0.050469827  0.026466711 -0.0362843972 -0.018142553
## be    -9.341994e-03  0.027067570  0.018562638  0.0039703018  0.074775635
##                PC6          PC7          PC8          PC9         PC10
## semi  -0.003225013  0.006653367 -0.003470552  0.002251530 -0.004618313
## anti  -0.004194566  0.008393698  0.002689386  0.001300376  0.002076167
## ee     0.011941281  0.039256550 -0.015375732 -0.040496522 -0.019725594
## ism   -0.027983324  0.003930176 -0.001045421  0.020678864  0.009417679
## ian   -0.188370272  0.059309527  0.034810384  0.159634035  0.023168465
## ful   -0.089418213 -0.300742548 -0.158172733 -0.250511252 -0.210429940
## y      0.644219470  0.225587873 -0.188802078 -0.161466243 -0.032612775
## ness   0.304951252 -0.443547497 -0.144747788  0.060323207 -0.043454176
## able  -0.006009694 -0.145859146 -0.006325395 -0.235348015  0.470837889
## ly    -0.052991909  0.011959280 -0.008432049  0.022764443 -0.055567344
## unV   -0.109360695 -0.002974983  0.087665975 -0.028417539 -0.068085658
## unA   -0.408284248 -0.031371334  0.015488332 -0.228847844  0.108209986
## ize   -0.094073117  0.028158650  0.123275342 -0.049307857  0.029930327
## less  -0.066651163 -0.002395469 -0.091759714  0.251220449 -0.460730745
## erA   -0.254706599 -0.337134471 -0.726781439  0.132479398  0.111008393
## erC    0.129446195 -0.622357913  0.450428021  0.233915584  0.164132007
## ity    0.189578284 -0.018677205 -0.108051709 -0.115447571  0.331659152
## super -0.030446223  0.050882269 -0.047779904 -0.017606744  0.051037168
## est    0.233669463 -0.009596281 -0.243064159  0.044988920 -0.176689093
## ment   0.044510063 -0.272830691  0.012365526  0.035675919 -0.332767817
## ify   -0.004728370  0.043038561 -0.041456216 -0.029300945 -0.002627392
## re    -0.159934804 -0.049883476  0.093560180 -0.467695411 -0.396803882
## ation  0.190912530 -0.046922483  0.080174969  0.033672934 -0.161348965
## in.   -0.100797260  0.191541832 -0.013351380  0.625353391  0.024056357
## ex     0.020949450 -0.066871680  0.077807890  0.039977792 -0.037945732
## en    -0.005986654 -0.083491293  0.205631804 -0.028878010 -0.134313024
## be    -0.070682871  0.020059446 -0.124727518 -0.043761693 -0.008180225
##                PC11         PC12          PC13          PC14          PC15
## semi  -0.0005830455 -0.001536351 -0.0066451545  0.0083819503  0.0098560648
## anti   0.0074529566 -0.015738812 -0.0052495230  0.0001581935 -0.0100626043
## ee    -0.0182669722 -0.039788767  0.0706545365 -0.0504359451  0.0410720372
## ism   -0.0029522852 -0.072868125  0.0582714611  0.0205702961 -0.1701652271
## ian    0.1730915615  0.139969007 -0.1730601220 -0.3799975090 -0.4805290458
## ful    0.0704932475  0.208921748 -0.5675506282  0.0507389045 -0.1962519930
## y     -0.0638670939 -0.062329716  0.0004008889 -0.0783880356 -0.0681247614
## ness   0.0737938651  0.179546544  0.1259532726 -0.1439787365  0.1267288938
## able  -0.1706904381  0.007351129  0.1200547627 -0.5018201660 -0.1628609086
## ly     0.0593751673 -0.003500042  0.0136929976 -0.0152726707  0.0157985264
## unV   -0.0475138511  0.292941398 -0.2486522138  0.1034888641  0.1042286602
## unA    0.0753079279 -0.325199628  0.1912346699  0.1499657635  0.1259483779
## ize   -0.1431553850 -0.122829309  0.2503350557 -0.0051500763 -0.2219790915
## less  -0.0771868716  0.070820122  0.4014470817  0.1377356452 -0.5389927391
## erA    0.0436132916  0.016215936  0.1358747681  0.0643745356  0.0817049652
## erC   -0.0601093751  0.077055327  0.1372508988  0.0943771488  0.0005757566
## ity   -0.4421078561  0.148308745 -0.0815250823  0.4983121277 -0.3382877496
## super -0.0441661711 -0.044253771 -0.0144974532  0.0663478382 -0.1071360224
## est   -0.0614081746 -0.077377880  0.1684166846 -0.0824193331  0.1702646841
## ment  -0.3527371116 -0.655978877 -0.2936364543 -0.1369067146 -0.0349040927
## ify   -0.0566048178  0.005137527 -0.1208249997  0.0039563899  0.0386935231
## re    -0.3979890594  0.390598759  0.2602659442 -0.2103582129  0.1699627345
## ation  0.4434342694  0.105893324  0.0397853762  0.0063402605 -0.0039350291
## in.   -0.4355820826  0.203311789 -0.1384728740 -0.1462369952  0.2600218827
## ex    -0.0311828545 -0.085929495 -0.0987381873 -0.2619261502 -0.1281324647
## en    -0.0023577674 -0.037986953 -0.0386019728  0.3051718380  0.0904668526
## be    -0.0896866743  0.036570906 -0.1170865550 -0.0114136222  0.0182162261
##                PC16         PC17         PC18          PC19          PC20
## semi  -0.0034943221 -0.015175256 -0.015900323 -0.0021499285 -0.0029091137
## anti   0.0340628721 -0.033762743  0.008902189  0.0004844268 -0.0177774665
## ee    -0.0140155048 -0.022083095  0.015546727 -0.0682435957 -0.1476586611
## ism    0.0815390108  0.000663692 -0.136162955  0.0021573756  0.2444099735
## ian   -0.5285651449 -0.208157219  0.247182365 -0.0862554266  0.0664386430
## ful    0.1823286223  0.051888963 -0.274744410  0.2787202201 -0.1448977137
## y     -0.0077135333 -0.017675786  0.077030539  0.0728150587  0.0925406938
## ness  -0.1111628855 -0.138461351  0.004440201  0.0485137064  0.1024000017
## able   0.1572226560  0.493110634  0.165167073  0.1652456948 -0.0698781698
## ly    -0.0308152179 -0.007756679  0.045274023 -0.0034698346  0.0050315441
## unV    0.1219893403  0.147539667  0.233861056 -0.1640691325  0.4451511776
## unA    0.0497117905 -0.028109251 -0.015677669 -0.1287423610  0.0556721055
## ize    0.0329198653 -0.310872378 -0.140797676  0.4995398968  0.3165866026
## less   0.2244291063  0.343582027  0.028032950 -0.0620537117 -0.0489746422
## erA   -0.0554265534 -0.096642988  0.161184444 -0.0021017013  0.0625842136
## erC   -0.0003969055 -0.013145111 -0.114041134 -0.0472416777  0.0649685944
## ity   -0.1110595559 -0.136248749  0.053910980 -0.2549062604 -0.0836559852
## super -0.0423045911 -0.196653644 -0.176218860  0.4229934625  0.1566180462
## est    0.0043360096 -0.050492012  0.096141044  0.0561389039  0.1086021056
## ment  -0.2106510884  0.111535188 -0.007246188 -0.1086645839  0.0007835833
## ify   -0.0183065107  0.241496797 -0.018899368 -0.1121654359  0.7050177302
## re    -0.1707450917 -0.145269987 -0.027190255 -0.0887607399 -0.0370081249
## ation  0.0317621615  0.099956817 -0.054567436  0.0041234103  0.0157715941
## in.    0.0548080940  0.029703954 -0.092100532  0.1746861567 -0.0802673978
## ex     0.6332060609 -0.524076124  0.285007229 -0.2456731071  0.0347500153
## en    -0.0897565705  0.059787299  0.736688334  0.4278062703 -0.0736235279
## be     0.2614781394  0.043618519  0.121391968  0.1512903790 -0.0410478228
##               PC21         PC22         PC23         PC24          PC25
## semi   0.005525585  0.002143075  0.067800745  0.040525531  0.0375055986
## anti  -0.063357613  0.003717218 -0.060577280 -0.084195185  0.1915222119
## ee     0.087806831  0.057761299 -0.133182645  0.553995947 -0.7643042117
## ism   -0.328280553 -0.061890710 -0.010119828  0.751153043  0.4364939706
## ian   -0.032533675  0.021291361 -0.110661154 -0.002799307 -0.0069163322
## ful   -0.102040025 -0.055127472  0.219625659  0.028016726 -0.1080196413
## y      0.016901523 -0.073258379 -0.012996486  0.011367911  0.0332789922
## ness   0.017964869  0.009913134 -0.073261232  0.001656885 -0.0138725553
## able   0.106956991 -0.022840205  0.100133439  0.021385016  0.0296086195
## ly     0.003834049  0.002858145 -0.017093038 -0.008674870 -0.0027185264
## unV    0.482166635 -0.460252051 -0.155926607  0.111625998  0.0270914381
## unA    0.077667154  0.008990635 -0.004284443 -0.037391610  0.0101280032
## ize   -0.154215888 -0.460698705 -0.018792568 -0.180967856 -0.2554321987
## less   0.115663458  0.064797013  0.023302226 -0.074563527 -0.0401466810
## erA   -0.013725371 -0.053352946  0.053290110  0.020873131 -0.0002410297
## erC   -0.009458144  0.084284178 -0.113120804  0.008400682 -0.0202726088
## ity   -0.019212631  0.006670734 -0.011064221 -0.032916778 -0.0347015962
## super  0.621877496  0.512622365 -0.079150638  0.117466812  0.1418919468
## est    0.058046989 -0.088935826  0.052275244  0.017698460  0.0273945070
## ment   0.100981546 -0.080044434 -0.096548729 -0.015955600  0.0358323373
## ify   -0.302378686  0.444305375  0.150297271 -0.152434936 -0.2625897498
## re    -0.057842480  0.118150490  0.003794933  0.024291548  0.1066954713
## ation  0.017915408 -0.013902423 -0.099995243 -0.025529848 -0.0167781838
## in.   -0.055007474 -0.007829463  0.111226881  0.042733686 -0.0108214757
## ex     0.027398435  0.146854460  0.174621057 -0.021998834 -0.0149071453
## en    -0.140116820  0.118960646  0.176327725  0.117201910  0.0184824618
## be    -0.248620341  0.143318790 -0.855390917 -0.100104147  0.0234089532
##                PC26          PC27
## semi  -0.9947246497 -0.0446758177
## anti  -0.0440098474  0.9712419877
## ee    -0.0228044988  0.1919355629
## ism    0.0458343941 -0.0406810472
## ian   -0.0121324633 -0.0031918832
## ful    0.0148400629  0.0297843818
## y     -0.0002280616 -0.0038573782
## ness  -0.0054568031  0.0108489830
## able  -0.0126693458  0.0183518106
## ly    -0.0001082655 -0.0008857188
## unV   -0.0089795482  0.0386326178
## unA    0.0049640483 -0.0034809176
## ize   -0.0201988190  0.0153955227
## less  -0.0119088925  0.0121044803
## erA    0.0028853219  0.0053997196
## erC   -0.0132164054  0.0053034258
## ity   -0.0018030238  0.0018057163
## super  0.0130069025  0.0128751685
## est    0.0041062810  0.0117086920
## ment  -0.0051166593 -0.0045836532
## ify   -0.0123368298  0.0480535650
## re     0.0071226608 -0.0095599515
## ation -0.0110111723 -0.0039686414
## in.    0.0151478593  0.0143734141
## ex     0.0106250881 -0.0316920304
## en     0.0069080148  0.0055343156
## be    -0.0603289793 -0.0943449195
biplot(affixes.pr)

ilm=read.table("http://www.tlu.ee/~jaagup/andmed/ilm/harkutund.txt", header=TRUE, sep=",")
ilmtervik=ilm[complete.cases(ilm), ]
ilmskaleeritud=scale(ilmtervik[, 4:11])
k=prcomp(ilmskaleeritud)
summary(k)
## Importance of components:
##                           PC1    PC2    PC3    PC4     PC5     PC6     PC7
## Standard deviation     1.7837 1.4293 1.0324 0.9979 0.82393 0.18019 0.04724
## Proportion of Variance 0.3977 0.2554 0.1332 0.1245 0.08486 0.00406 0.00028
## Cumulative Proportion  0.3977 0.6531 0.7863 0.9108 0.99565 0.99971 0.99999
##                             PC8
## Standard deviation     0.009931
## Proportion of Variance 0.000010
## Cumulative Proportion  1.000000
k$rotation
##               PC1         PC2         PC3          PC4         PC5
## PR1H   0.00711280 -0.04520461 -0.88020407  0.244841757 -0.40276082
## RH1H  -0.27729574  0.22654218 -0.38762822  0.051695161  0.84758581
## TA1H   0.55463758  0.04083873 -0.05493746  0.024279913  0.14364667
## TAN1H  0.55333642  0.03865013 -0.05906746  0.025653150  0.15963933
## TAX1H  0.55513765  0.04318208 -0.05437973  0.023313546  0.12647246
## WD1H   0.02789537  0.05062730 -0.24291668 -0.964852939 -0.05628217
## WS1H  -0.00667084 -0.68633713 -0.01997501  0.002043071  0.17555236
## WSX1H  0.01587383 -0.68409581 -0.07818826 -0.068144239  0.15258220
##                PC6           PC7           PC8
## PR1H   0.030932945 -0.0048919620  0.0014858223
## RH1H  -0.005203612  0.0207052225  0.0004310549
## TA1H   0.007302212 -0.0033944971  0.8163347986
## TAN1H  0.033142509 -0.7001888190 -0.4139207687
## TAX1H -0.017682326  0.7126601984 -0.4028204443
## WD1H   0.059508419 -0.0001720885  0.0002346669
## WS1H   0.704745933  0.0317497209  0.0003994812
## WSX1H -0.705225908 -0.0194634238 -0.0004187381
barplot(k$sdev**2)

plot(k)

biplot(k)

ilmskaleeritud=scale(ilmtervik[(ilmtervik$Kuu==7) & (ilmtervik$Paev==3), 5:11])
k=prcomp(ilmskaleeritud)
summary(k)
## Importance of components:
##                          PC1     PC2     PC3     PC4     PC5     PC6
## Standard deviation     2.483 0.74396 0.47392 0.17631 0.11807 0.09702
## Proportion of Variance 0.881 0.07907 0.03209 0.00444 0.00199 0.00134
## Cumulative Proportion  0.881 0.96003 0.99211 0.99655 0.99855 0.99989
##                            PC7
## Standard deviation     0.02766
## Proportion of Variance 0.00011
## Cumulative Proportion  1.00000
k$rotation
##              PC1         PC2         PC3         PC4           PC5
## RH1H  -0.3890082 -0.05022296  0.50203127 -0.17518054 -0.7502292906
## TA1H   0.3980416  0.15273899 -0.18405087 -0.10876760 -0.3354825322
## TAN1H  0.3965527  0.16790896 -0.19020260  0.03521465 -0.3284229374
## TAX1H  0.3962639  0.17072795 -0.19841355 -0.16308611 -0.3136454224
## WD1H   0.2841592 -0.95194053 -0.03886784 -0.02049261 -0.1044464054
## WS1H   0.3841292  0.07589773  0.56059536  0.72165370 -0.0001891517
## WSX1H  0.3842586  0.06968334  0.56812591 -0.63909329  0.3278159818
##                 PC6         PC7
## RH1H   0.0145207103 -0.01928264
## TA1H  -0.0115398474  0.81230958
## TAN1H  0.7193174029 -0.38968741
## TAX1H -0.6801717762 -0.43226703
## WD1H   0.0005068976 -0.01492712
## WS1H  -0.1060674567  0.01956295
## WSX1H  0.0914015722 -0.02155774
biplot(k)

affixes.fac=factanal(affixProductivity[, 1:27], factors=3)
affixes.fac
## 
## Call:
## factanal(x = affixProductivity[, 1:27], factors = 3)
## 
## Uniquenesses:
##  semi  anti    ee   ism   ian   ful     y  ness  able    ly   unV   unA 
## 0.865 0.909 0.934 0.244 0.705 0.688 0.964 0.633 0.713 0.798 0.848 0.324 
##   ize  less   erA   erC   ity super   est  ment   ify    re ation   in. 
## 0.436 0.803 0.851 0.775 0.414 0.749 0.881 0.640 0.941 0.730 0.094 0.406 
##    ex    en    be 
## 0.681 0.837 0.855 
## 
## Loadings:
##       Factor1 Factor2 Factor3
## semi                   0.348 
## anti           0.278         
## ee                    -0.246 
## ism    0.493   0.467   0.543 
## ian    0.229  -0.490         
## ful           -0.522   0.196 
## y             -0.184         
## ness   0.169           0.580 
## able   0.463   0.265         
## ly    -0.141   0.116   0.411 
## unV   -0.218  -0.322         
## unA    0.698  -0.273   0.337 
## ize    0.419   0.621         
## less  -0.196  -0.170   0.360 
## erA                   -0.383 
## erC   -0.323  -0.237  -0.254 
## ity    0.701   0.277   0.135 
## super  0.259   0.377  -0.202 
## est   -0.180  -0.266  -0.126 
## ment   0.486   0.324  -0.139 
## ify    0.196   0.126         
## re     0.359          -0.372 
## ation  0.888   0.211  -0.269 
## in.    0.758           0.134 
## ex     0.476   0.284  -0.108 
## en     0.382          -0.127 
## be    -0.142  -0.336   0.107 
## 
##                Factor1 Factor2 Factor3
## SS loadings      4.186   2.242   1.853
## Proportion Var   0.155   0.083   0.069
## Cumulative Var   0.155   0.238   0.307
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 308.11 on 273 degrees of freedom.
## The p-value is 0.0707
loadings(affixes.fac)
## 
## Loadings:
##       Factor1 Factor2 Factor3
## semi                   0.348 
## anti           0.278         
## ee                    -0.246 
## ism    0.493   0.467   0.543 
## ian    0.229  -0.490         
## ful           -0.522   0.196 
## y             -0.184         
## ness   0.169           0.580 
## able   0.463   0.265         
## ly    -0.141   0.116   0.411 
## unV   -0.218  -0.322         
## unA    0.698  -0.273   0.337 
## ize    0.419   0.621         
## less  -0.196  -0.170   0.360 
## erA                   -0.383 
## erC   -0.323  -0.237  -0.254 
## ity    0.701   0.277   0.135 
## super  0.259   0.377  -0.202 
## est   -0.180  -0.266  -0.126 
## ment   0.486   0.324  -0.139 
## ify    0.196   0.126         
## re     0.359          -0.372 
## ation  0.888   0.211  -0.269 
## in.    0.758           0.134 
## ex     0.476   0.284  -0.108 
## en     0.382          -0.127 
## be    -0.142  -0.336   0.107 
## 
##                Factor1 Factor2 Factor3
## SS loadings      4.186   2.242   1.853
## Proportion Var   0.155   0.083   0.069
## Cumulative Var   0.155   0.238   0.307
plot(loadings(affixes.fac))

affixes.fac=factanal(affixProductivity[, 1:27], factors=4, rotation="promax")
affixes.fac
## 
## Call:
## factanal(x = affixProductivity[, 1:27], factors = 4, rotation = "promax")
## 
## Uniquenesses:
##  semi  anti    ee   ism   ian   ful     y  ness  able    ly   unV   unA 
## 0.842 0.915 0.923 0.278 0.614 0.618 0.679 0.572 0.690 0.035 0.857 0.301 
##   ize  less   erA   erC   ity super   est  ment   ify    re ation   in. 
## 0.449 0.789 0.796 0.615 0.403 0.748 0.799 0.636 0.927 0.685 0.120 0.391 
##    ex    en    be 
## 0.681 0.791 0.801 
## 
## Loadings:
##       Factor1 Factor2 Factor3 Factor4
## semi           0.153   0.224   0.260 
## anti   0.303                         
## ee                    -0.254         
## ism    0.584   0.214   0.620   0.184 
## ian   -0.453   0.449          -0.339 
## ful   -0.554   0.342           0.219 
## y     -0.221   0.177  -0.330   0.422 
## ness   0.104   0.103   0.649         
## able   0.396   0.295           0.120 
## ly                     0.124   0.976 
## unV   -0.377                         
## unA   -0.113   0.803   0.226         
## ize    0.737           0.106         
## less  -0.247           0.320         
## erA                   -0.447         
## erC   -0.360  -0.108  -0.486   0.225 
## ity    0.490   0.473   0.218         
## super  0.460          -0.101         
## est   -0.305                  -0.320 
## ment   0.472   0.254                 
## ify    0.197           0.155         
## re     0.147   0.317  -0.397         
## ation  0.476   0.650  -0.136  -0.188 
## in.    0.172   0.709   0.101         
## ex     0.419   0.278                 
## en             0.315          -0.293 
## be    -0.387                  -0.194 
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings      3.482   2.711   1.944   1.750
## Proportion Var   0.129   0.100   0.072   0.065
## Cumulative Var   0.129   0.229   0.301   0.366
## 
## Factor Correlations:
##          Factor1 Factor2  Factor3 Factor4
## Factor1  1.00000 -0.0229 -0.00647 -0.0505
## Factor2 -0.02289  1.0000  0.05513 -0.2510
## Factor3 -0.00647  0.0551  1.00000  0.2098
## Factor4 -0.05054 -0.2510  0.20983  1.0000
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 269.71 on 249 degrees of freedom.
## The p-value is 0.175
plot(loadings(affixes.fac))

ilm=read.table("http://www.tlu.ee/~jaagup/andmed/ilm/harkutund.txt", header=TRUE, sep=",")
ilmtervik=ilm[complete.cases(ilm), ]
ilmskaleeritud=scale(ilmtervik[, 4:11])
t1=factanal(ilmskaleeritud, factors=3, rotation="promax")
t1
## 
## Call:
## factanal(x = ilmskaleeritud, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##  PR1H  RH1H  TA1H TAN1H TAX1H  WD1H  WS1H WSX1H 
## 0.969 0.818 0.005 0.005 0.005 0.894 0.005 0.005 
## 
## Loadings:
##       Factor1 Factor2 Factor3
## PR1H                   0.165 
## RH1H  -0.364  -0.213         
## TA1H   1.000                 
## TAN1H  0.999                 
## TAX1H  0.998                 
## WD1H                   0.323 
## WS1H           0.992  -0.112 
## WSX1H          0.988   0.142 
## 
##                Factor1 Factor2 Factor3
## SS loadings      3.130   2.011   0.164
## Proportion Var   0.391   0.251   0.021
## Cumulative Var   0.391   0.643   0.663
## 
## Factor Correlations:
##         Factor1  Factor2  Factor3
## Factor1  1.0000  0.03255 -0.10608
## Factor2  0.0325  1.00000 -0.00428
## Factor3 -0.1061 -0.00428  1.00000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 28823.7 on 7 degrees of freedom.
## The p-value is 0
head(oldFrench)
##       T30.16.00 T00.31.51 T16.00.31 T00.60.31 T16.00.33 T02.00.30
## Abe.2        11         2         1         6         3        13
## Abe.3        13         4         6         5         6        10
## Abe.4         7         1         4         2         5         9
## Abe.5         8         1         3         3         4         3
## Abe.6         7         1         6         1         1         8
## Abe.7        13         6         4         2         4         9
##       T10.00.30 T00.60.43 T30.00.33 T10.00.31 T02.00.33 T10.00.33
## Abe.2         6         2         5         4         4         3
## Abe.3         4         2         3         3         4         5
## Abe.4        14         2         8         1         6        12
## Abe.5         8         1         8         3         7         9
## Abe.6        10         7        15         1         7         8
## Abe.7        14         1        10        11        12         8
##       T16.00.60 T00.33.10 T30.00.60 T02.00.60 T10.00.60 T00.33.30
## Abe.2         1         5         6         8         9        15
## Abe.3         4         8        11         8        11        11
## Abe.4         1         4         4         4        13        14
## Abe.5         5         3         4         8        16         7
## Abe.6         1         8         7         7         4        10
## Abe.7         2         7         7         9         7        11
##       T10.00.55 T00.33.31 T55.10.00 T60.10.00 T33.10.00 T51.10.00
## Abe.2         3         6         8         5        11         1
## Abe.3         6         6         7         6         9         1
## Abe.4         6         8         6         5        20         2
## Abe.5         5         8         4         3         7         2
## Abe.6         3         6         8         3        13         3
## Abe.7         7         8         6        14        10         6
##       T31.10.00 T30.02.00 T30.10.00 T00.30.00 T10.02.00 T00.30.01
## Abe.2         5         6        14        17         3         2
## Abe.3         7         8        19        29         2         2
## Abe.4         4         9        22        35         2         2
## Abe.5         6         6         5         6         1         6
## Abe.6         2         8        12         8         6        10
## Abe.7         6         3        10        30         2         1
##       T00.10.00 T00.30.10 T00.30.16 T30.15.00 T31.51.31
## Abe.2         5        15         2         9        12
## Abe.3         5        13         3         8         0
## Abe.4         8        12         2         4         7
## Abe.5         7         8         2         8         5
## Abe.6        12         8         2        11         1
## Abe.7        10        24         5        11         3
head(oldFrenchMeta)
##   Textlabels Codes Author Topic Genre Region Year
## 1        Abe Abe.2   Meun Other prose     R2 1325
## 2        Abe Abe.3   Meun Other prose     R2 1325
## 3        Abe Abe.4   Meun Other prose     R2 1325
## 4        Abe Abe.5   Meun Other prose     R2 1325
## 5        Abe Abe.6   Meun Other prose     R2 1325
## 6        Abe Abe.7   Meun Other prose     R2 1325
oldFrench.ca=corres.fnc(oldFrench)
summary(oldFrench.ca)
## 
## Call:
## corres(oldFrench)
## 
## Eigenvalue rates:
## 
##      0.1704139 0.1326913 0.06854973 0.05852097 0.05394474 0.04642929  ... 
## 
## Factor 1 
## 
##           coordinates correlations contributions
## T30.16.00      -0.113        0.074         0.012
## T00.31.51      -0.560        0.464         0.103
## T16.00.31      -0.139        0.053         0.006
## T00.60.31      -0.122        0.050         0.006
## T16.00.33      -0.085        0.020         0.003
## T02.00.30       0.293        0.227         0.027
## ... 
## 
## Factor 2 
## 
##           coordinates correlations contributions
## T30.16.00       0.119        0.082         0.017
## T00.31.51       0.205        0.062         0.018
## T16.00.31       0.255        0.179         0.024
## T00.60.31       0.162        0.090         0.014
## T16.00.33      -0.220        0.139         0.029
## T02.00.30       0.166        0.073         0.011
## ...
plot(oldFrench.ca)

plot(oldFrench.ca, rlabels=oldFrenchMeta$Genre)

head(variationLijk)
##             nlfemaleHigh nlfemaleMid nlmaleHigh nlmaleMid vlfemaleHigh
## afhankelijk            1           1          3         4            1
## belachelijk            7           4          7         3            6
## dadelijk               8          13          6        10            2
## degelijk               1           1          1         1            1
## duidelijk             11           6         14         8            6
## eerlijk                6           9          9         5            5
##             vlfemaleMid vlmaleHigh vlmaleMid
## afhankelijk           2          3         1
## belachelijk           4          3         7
## dadelijk              3          1         2
## degelijk              1          2         1
## duidelijk             5         13         6
## eerlijk               2          5         4
chisq.test(variationLijk)
## Warning in chisq.test(variationLijk): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  variationLijk
## X-squared = 575.35, df = 217, p-value < 2.2e-16
k=corres.fnc(variationLijk)
plot(k)

ilm=read.table("http://www.tlu.ee/~jaagup/andmed/ilm/harkutund.txt", header=TRUE, sep=",")
ilmtervik=ilm[complete.cases(ilm), ]

k=corres.fnc(ilmtervik[, 4:11])
plot(k, rlabels = ilmtervik$Kuu, rcex = 0.5)

k=corres.fnc(ilmtervik[ilmtervik$Kuu==7, 4:11])
plot(k, rlabels = substr(ilmtervik$Kell, 1, 2), rcex = 0.3)