Ratsu Programmi sisendiks ratsu asukoht malelaual * Väljasta ruudud, kuhu on võimalik liikuda ühe ratsukäiguga * Väljasta ratsu üks võimalik teekond algruudust paremasse ülanurka * Lisaks ratsule on laual kinni veel osa ruute. Väljasta teekond paremasse ülanurka nõnda, et võimalusel proovitakse enne suundi, mis otse sihtkoha poole lähevad. Oda Programmi sisendiks oda asukoht malelaual * Väljasta ruudud, kuhu on võimalik liikuda ühe odakäiguga * Osa ruutudel on kasutaja enese malendid. Näita millistele ruutudele on võimalik odaga liikuda (vajadusel mitme sammu abil) * Malelaual on valge ja must oda ning osa ruute läbimatuks märgitud. Hinda seisu alustava valge oda seisukohast - kas kordamööda ja võimalikult hästi käies on tegemist valge oda võiduga (lööb musta oda), kaotusega (must oda lööb valge oda) või viigiga (valgel odal pole seitsme käigu jooksul võiduvõimalust ega kaotuseoluorda). Maagiline ruut * Leia programmi abil ühte ritta neli juhuslikku ühekohalist arvu, mille summa oleks kokku 10 * Leia võimalikud moodused 4x4 ruudustikus ühekohaliste arvude paigutamiseks nõnda, et iga rea ja iga veeru summa oleks kokku 10 * Ruudustikus võib osa lahtreid olla eelnevalt täidetud. Ridade ja veergude ühise summa saab määrata. Leia võimalikud tühjade lahtrite täitmise moodused (või nende puudumine) Klassifitseerimine Kopeeri uuringuks kümmekond reklaamteksti ning kümmekond matemaatikateemalist Vikipeedia artiklit. * Tutvu tekstide sõnadega, leia kummagi tekstirühma levinumad sõnad. Paku veel tunnuseid, mille poolest võiksid reklaami- ja matemaatikatekstid erineda. Võta üks uus reklaami- ja üks uus matemaatikatekst ning too välja, kuivõrd leitud tunnused aitavad kummagi teksti liiki määrata. * Valmista näitandmete põhjal ette andmestik, treeni mudel. Proovi mudeli abil määrata teksti tüüpi reklaami- või matemaatikatekstiks. * Lisa andmestikku kümme luuletust. Lase valitud teksti ennustada luuletuseks, reklaami- või matemaatikatekstiks. Kommenteeri tulemusi. Teekond kaardil * Koosta kaart punktide (vähemalt 6) ning nendevaheliste otseteedega (vähemalt 10). Iga punkti lisaomaduseks on tema kõrgus merepinnast. * Arvuta ja kuva üks võimalik teekond kahe valitud punkti vahel. Arvuta sealjuures tõusu- ning laskumismeetrite hulk * Leia teekond kahe valitud punkti vahel, nii et ükski teekonnapunkt ei korduks ning tõusu- ja laskumismeetrite summa oleks võimalikult suur. Parooliautomaat * Koosta lõplik automaat algseisundi, lõpuseisundi ning kokku viie seisundiga. Tee programmi abil kindlaks, kas sisestatud jada sobib automaadi läbimiseks. * Kuva programmi abil kõik kuni seitsme sümboli pikkused jadad, mille abil on võimalik jõuda algseisundist lõpuseisundisse * Järjesta automaadi seisundid selle järgi, mitmel erineval moel on võimalik neisse algseisundist jõuda seitsmeelemendilise jada abil. Labürindi hõlvamine Ruudustik on labürint, kus ruut saab kuuluda ühele mängijale, teisele mängijale, olla vaba või ligipääsmatu. Ühe käiguga saab kumbki mängija hõlvata ühe vaba ruudu, mis asub horisontaalis või vertikaalis ükskõik millise tema ruudu kõrval. Esimene mängija alustab vasakust ülanurgast, teine paremast alanurgast. Mäng võidetakse, kui vastane ei saa enam käia. * Näita kõik ruudud, mille hulgast saab olemasoleva seisu puhul käigul hõlvata esimene mängija. * Väljasta, kas tegemist on seisuga, kus pärast esimese mängija sobivat käiku, järgnevat vastase omale parimat käiku ning taas esimese mängija sobivat käiku pole vastasel enam võimalik käia * Pane arvuti inimese vastu mängima, lisa kasutajaliides L-mäng https://hwwmath.looiwenli.com/l-game * Väljasta olemasolevast seisust kasutaja võimalikud L-tähe paigutuskohad * Väljasta olemasolevast seisust kasutaja võimalikud L-tähe paigutuskohad ning järgnevad võimalikud täppide asendid. Teata, kui õnnestub leida selline seis, kus vastasel pole enam võimalik käia (oma L-tähte vähemalt ühe ruudu võrra erinevamasse kohta paigutada) * Püüa panna arvuti inimese vastu mängima, teata mängu lõpust Kang, puu ja teleskoop * Koosta kasutajaliides, kus kasutaja määrab kangi tõstja rakendatava jõu. Kui see ületab kangi raskusjõu, siis tõstab ta kangi kahe meetri kõrgusele * Kasutaja määrab, kui tugeva jõuga tuul puud mõjutab. Joonisel on näha puu asend vastavalt tuulele * Kasutaja määrab, kui tugeva jõuga mõjutab tuul tasakaalustava kraani ja ämbriga varustatud teleskoopi. Näita, kuidas muutub teleskoobi asend, millised jõud millal ja kuidas rakenduvad. Küttesüsteem Programmi sisendiks ruumi temperatuur, ruumi soovitav temperatuur ja välistemperatuur. Iga minutiga ühtlustub ruumi temperatuur nende vahest sajandiku jagu välistemperatuuri suunas. Küttekeha soojendab ruumi 0,1 kraadi minutis. * Temperatuuri jõudmisel soovitud temperatuurini lülitub küttekeha välja. Sellest kraad madalamal lülitub jälle sisse. Arvuta ja kuva temperatuurid iga minuti tagant. * Küttekeha võimsus väheneb soovitud temperatuurile lähenemisel. Arvuta ja kuva temperatuurid. * Küttekeha võimsus väheneb soovitud temperatuurile lähenemisel. Kui aga paistab, et niimoodi soovitud temperatuuri ei saavutata, antakse sujuvalt jälle võimsust juurde ning taas vähendatakse kui sihttemperatuur hakkab lähemale jõudma. Kirjelda võimalikke algoritme ning illustreeri arvutuste tulemusi graafiliselt. Etturite male Ettur saab käia ühe käigu edasi, vastase nuppu lüüa diagonaalis ühe käigu jagu edasi. Mängijad käivad kordamööda. Võiduks loetakse, kui vastase nupud saavad otsa. Viik on juhul, kui üks pool enam käia ei saa. * Väljasta, kas alustav valge mängija saab teha võidukäigu * Väljasta, kas valgel leidub kindel võit kahe käiguga * Kirjelda algoritmi ja võimalikku andmete hoidmise kuju terve mängu tarbeks. Pane arvuti kasutaja vastu mängima. Sipelgate toiduotsimine - simulatsiooniprogramm Sipelgapesa asukoht on koordinaatide alguspunktis, kümne meetri raadiuses juhuslikus kohas on kaks toidupala, üks suurem, teine väiksem. * Koosta sipelgatele juhusliku liikumise algoritm. Kui sipelgas jõuab toidust vähem kui meetri kaugusele, jääb ta seisma. Kuva koordinaadid näitliikumisel, kus sipelgas jõudis toiduni ning esimese saja lõigu koordinaadid liikumisel, kus ta ei jõudnud toiduni. * Toiduni jõudnud sipelgas tuleb tagasi otse pesa poole ning iga poole meetri tagant jätab maha lõhnatilga, mille tugevus ajas väheneb. Lõhnatilgani jõudnud sipelgad hakkavad sealt liikuma järgmise lõhnatilga juurde (kui selline aktiivne). Kuva sipelgate koordinaadid ajahetkede tagant. * Kuva simulatsioonile graafiline liides. Arvesta ka ühe toidupala ja pärast teise lõppemisega ning sipelgate käitumisega nendes tingimustes. Sipelgate toiduotsimine - arvutused Sipelgapesa asukoht on koordinaatide alguspunktis, kümne meetri raadiuses on kaks toidupala, üks suurem, teine väiksem. * Toitu otsiva sipelga algoritmiks on iga meetri tagant oma liikumissuunda kuni 45 kraadi jagu muuta. Arvuta sipelga võimalikud asukohad liikumisel. * Kümne meetri kaugusele jõudnuna või toidupalast kuni meetri kaugusele jõudnuna jääb sipelgas seisma. Leia mitmel protsendil juhtudest jõudis sipelgas 10 meetri kaugusel, mitmel ühe ja mitmel teise toidupalani. Leia kõigi kolme võimaluse puhul keskmine läbitud meetrite arv, samuti miinimum, maksimum, mediaan ja kvartiilid. * Leia ja põhjenda teooria või katsete kaudu seos, kuidas toiduni jõudvate sipelgate osakaal sõltub toidu kaugusest pesast. Püüa koostada võimalikult realistlik mudel näitamaks, kui tihti on toiduga pessa suunduval sipelgal põhjust lõhnaainet pritsida - arvestades, et iga pritsimine kulutab osa toodavast toidust. Samuti kulutab seda iga sipelgate läbitud meeter. Rändkaupmehe ülesanne - arvutamine ja põhjendamine * Koosta joonis viie linna ning nendevaheliste teepikkustega. Leia teekond, mis läbiks iga linna ainult ühe korra ja jõuaks alguspunkti tagasi. Näita, millistel juhtudel on sellise teekonna leidmine võimatu. * Leia viie linna ja nendevaheliste teede puhul lühim läbimismoodus. Põhjenda, miks just see moodus kindalt lühim on. Koosta sarnane võrgustik kümne linnaga, kauguse võib leida Pythagorase teoreemi abil. Kasuta eelnevalt leitud algoritmi kümne linna juures ning näita arvutuste arvu suurusjärk ning eeldatav ajakulu kindlalt parima tulemuse saamisel * Otsi ja paku lahendusi 20..50 linnaga võrgustiku puhul rändkaupmehe ülesande lahendamiseks. Tee mõni neist algetapina läbi. Hinda eeldatavat ajakulu ning lõpptulemuse ja teoreetiliselt parima tulemuse võimalikku vahet.