
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: xml-feedback@sun.com

Web Services Made Easier

The JavaTM APIs for XML

A Technical White Paper

June 2001 Revision 1

Please
Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:

Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Solaris, Java, Java 2 Platform, Enterprise Edition, J2EE, JavaServer Pages,

JSP, Java API for XML Processing, Java Architecture for XML Binding, Java API for XML Messaging, Java API for XML Registries, and Java API

for XML-based RPC are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All

SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape Communicator™: Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Solaris, Java, Java 2 Platform, Enterprise Edition, J2EE, JavaServer Pages,

JSP, Java API for XML Processing, Java Architecture for XML Binding, Java API for XML Messaging, Java API for XML Registries, et Java API for

XML-based RPC sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et

dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC

International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par

Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

it
ability
little

nter-
prises.
com-

ing,"
ol man-
imulta-
va
ol-
plat-

ping

web
rio that

d how
u sort

sent-
cant
d text,

price
Introduction and Overview

XML makes data portable. The JavaTM platform makes code portable. The Java APIs for XML make
easy to use XML. Put these together, and you have the perfect combination: portability of data, port
of code, and ease of use. In fact, with the Java APIs for XML, you can get the benefits of XML with
or no direct use of XML.

Enterprises are rapidly discovering the benefits of using XML for the integration of data, both i
nally for sharing legacy data among departments, and externally for sharing data with other enter
And because of the data integration that XML offers, it has become the underpinning for Web-related
puting.

The really hard part of developing web services is programming the infrastructure, or "plumb
such as security, messaging capabilities, distributed transaction management, and connection po
agement. Another difficulty is that web services must be able to handle huge numbers of users s
neously, so applications must be highly scalable. These requirements are exactly what the JaTM 2
platform, Enterprise Editon (J2EETM) offers. Add to this the fact that the J2EE platform is a proven techn
ogy with multiple vendors offering compatible products today, and it is a "no-brainer" that the J2EE
form is the best platform for deploying web services. And with the new Java APIs for XML, develo
web services is getting easier and easier.

The goal of this paper is to make clear what the Java APIs for XML do and how they make writing
applications easier. The paper describes each of the APIs individually and then presents a scena
shows how they work together. It also mentions various other technologies currently available an
they can be used in conjuction with the Java APIs for XML. There is a glossary at the back to help yo
out all of the acronyms and to clarify terminology.

More detailed information about the Java APIs for XML is available at the following URL:

http://java.sun.com/xml

What Is XML?
XML (eXtensible Markup Language) is an industry-standard, system-independent way of repre

ing data. Like HTML (HyperText Markup Language), XML encloses data in tags, but there are signifi
differences between the two markup languages. First, XML tags relate to the meaning of the enclose
whereas HTML tags specify how to display the enclosed text. The following XML example shows a
list with the name and price of two coffees.

<priceList>

<coffee>

<name>Mocha Java</name>

<price>11.95</price>

</coffee>

<coffee>

<name>Sumatra</name>

<price>12.50</price>

</coffee>

</priceList>
Page 1

The
its

y make

u to
ags

doc-
a set of
most-
in this

nt. It
n other
hich

e

offee

a
g

t will

r one
are.
there is
atting
means
The<coffee> and</coffee> tags tell a parser that the information between them is about a coffee.
two other tags inside the<coffee> tags specify that the enclosed information is the coffee’s name and
price per pound. Because XML tags indicate the content and structure of the data they enclose, the
it possible to do things like archiving and searching.

A second major difference between XML and HTML is that XML tags are extensible, allowing yo
write your own XML tags to describe your content. With HTML, you are limited to using only those t
that have been predefined in the HTML specification.

With the extensibility that XML provides, you can create the tags you need for a particular type of
ument. You define the tags using an XML schema language. A schema describes the structure of
XML documents and can be used to constrain the contents of the XML documents. Probably the
widely used schema language is the Document Type Definition schema language. A schema written
language is called a DTD. The DTD that follows defines the tags used in the price list XML docume
specifies four tags (elements) and further specifies which tags may occur (or are required to occur) i
tags. The DTD also defines the hierarchical structure of an XML document, including the order in w
the tags must occur.

<!ELEMENT priceList (coffee)+>

<!ELEMENT coffee (name, price) >

<!ELEMENT name (#PCDATA) >

<!ELEMENT price (#PCDATA) >

The first line in the example gives the highest level element,priceList, which means that all the other
tags in the document will come between the<priceList> and</priceList> tags. The first line also says
that thepriceList element must contain one or morecoffee elements (indicated by the plus sign). Th
second line specifies that eachcoffee element must contain both aname element and aprice element, in
that order. The third and fourth lines specify that the data between the tags<name> and </name> and
between<price> and</price> is character data that should be parsed. The name and price of each c
are the actual text that makes up the price list.

What Makes XML Portable?
A DTD, such as thepriceList DTD, is what gives XML data its portability. If an application is sent

priceList document in XML format and has thepriceList DTD, it can process the document accordin
to the rules specified in the DTD. For example, given thepriceList DTD, a parser will know the structure
and type of content for any XML document based on that DTD. If the parser is a validating parser, i
know that the document is not valid if it contains an element not included in the DTD, such as<tea>, or if
theprice element precedes thename element.

Other features also contribute to the popularity of XML as a method for data interchange. Fo
thing, it is written in a text format, which is readable by both human beings and text-editing softw
Applications can parse and process XML documents, and human beings can also read them in case
an error in processing. Another feature is that because an XML document does not include form
instructions, it can be displayed in various ways. Keeping data separate from formatting instructions
that the same data can be published to different media.
Page 2

lan-
e that

stan-
World

Stan-
se stan-

ave
XML

ve flex-
ple-
om to

 them.
Overview of the Java APIs for XML
The Java APIs for XML let you write your web applications entirely in the Java programming

guage. They fall into two broad categories: those that deal directly with XML documents and thos
deal with procedures.

• Document-oriented

• JavaTM API for XML Processing (JAXP) — processes XML documents using various
parsers

• JavaTM Architecture for XML Binding (JAXB) — maps XML elements to classes in the
Java programming language

• Procedure-oriented

• JavaTM API for XML Messaging (JAXM) — sends SOAP messages over the Internet
in a standard way

• JavaTM API for XML Registries (JAXR) — provides a standard way to access business
registries and share information

• JavaTM API for XML-based RPC (JAX-RPC) — sends SOAP method calls to remote
parties over the Internet and receives the results

Perhaps the most important feature of the Java APIs for XML is that they all support industry
dards, thus ensuring interoperability. Various network interoperability standards groups, such as the
Wide Web Consortium (W3C) and the Organization for the Advancement of Structured Information
dards (OASIS), have been defining standard ways of doing things so that businesses who follow the
dards can make their data and applications work together.

Another feature of the Java APIs for XML is that they they allow a great deal of flexibility. Users h
flexibility in how they use the APIs. For example, JAXP code can use various tools for processing an
document, and JAXM code can use various messaging protocols on top of SOAP. Implementers ha
ibility as well. The Java APIs for XML define strict compatibility requirements to ensure that all im
mentations deliver the standard functionality, but they also give developers a great deal of freed
provide implementations tailored to specific uses.

The following sections discuss each of these APIs, giving an overview and a feel for how to use
Page 3

ns
PI for
tream
ML
ta and
also

flicts.
lica-
n of
you

intly

an XML
pplica-

s the

,
arser

rite a
ppose

ple-
JAXP

Overview
The JavaTM API for XML Processing (JAXP) makes it easy to process XML data with applicatio

written in the Java programming language. JAXP leverages the parser standards SAX (Simple A
XML Parsing) and DOM (Document Object Model) so that you can choose to parse your data as a s
of events or to build an object representation of it. JAXP version 1.1 also supports the XSLT (X
Stylesheet Language Transformations) standard, giving you control over the presentation of the da
enabling you to convert the data to other XML documents or to other formats, such as HTML. JAXP
provides namespace support, allowing you to work with DTDs that might otherwise have naming con

Designed to be flexible, JAXP allows you to use any XML-compliant parser from within your app
tion. It does this with what is called a pluggability layer, which allows you to plug in an implementatio
the SAX or DOM APIs. The pluggability layer also allows you to plug in an XSL processor, letting
control how your XML data is displayed. The JAXP 1.1 Reference Implementation (available fromhttp:/

/java.sun.com/xml) provides the Xalan XSLT processor and the Crimson parser, both developed jo
between Sun and the Apache Software Foundation, which provides open source software.

The SAX API
SAX defines an API for an event-based parser. Being event-based means that the parser reads

document from beginning to end, and each time it recognizes a syntax construction, it notifies the a
tion that is running it. The SAX parser notifies the application by calling methods from theCon-

tentHandler interface. For example, when the parser comes to a less than symbol ("<"), it call
startElement method; when it comes to character data, it calls thecharacters method; when it comes to
the less than symbol followed by a slash ("</"), it calls theendElement method, and so on. To illustrate
let’s look at part of the example XML document from the first section and walk through what the p
does for each line. (For simplicity, calls to the methodignorableWhiteSpace are not included.)

<priceList> [parser calls startElement]

<coffee> [parser calls startElement]

<name>Mocha Java</name> [parser calls startElement, characters, and endElement]

<price>11.95</price> [parser calls startElement, characters, and endElement]

</coffee> [parser calls endElement]

The default implementations of the methods that the parser calls do nothing, so you need to w
subclass implementing the appropriate methods to get the functionality you want. For example, su
you want to get the price per pound for Mocha Java. You would write a class extendingDefaultHandler

(the default implementation ofContentHandler) in which you write your own implementations of the
methodsstartElement andcharacters.

You first need to create aSAXParser object from aSAXParserFactory object. You would call the
methodparse on it, passing it the price list and an instance of your new handler class (with its new im
mentations of the methodsstartElement andcharacters). In this example, the price list is a file, but the
parse method can also take a variety of other input sources, including anInputStream object, a URL, and
anInputSource object.
Page 4

-
ch as

orks,

condi-
ore the

follow-

that
t is
SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser saxParser = factory.newSAXParser();

saxParser.parse("priceList.xml", handler);

The result of calling the methodparse depends, of course, on how the methods inhandler were imple-
mented. The SAX parser will go through the filepriceList.xml line by line, calling the appropriate meth
ods. In addition to the methods already mentioned, the parser will call other methods su
startDocument, endDocument, ignorableWhiteSpace, and processingInstructions, but these methods
still have their default implementations and thus do nothing.

The following method definitions show one way to implement the methodscharacters andstartEle-
ment so that they find the price for Mocha Java and print it out. Because of the way the SAX parser w
these two methods work together to look for thename element, the characters "Mocha Java", and theprice

element immediately following Mocha Java. These methods use three flags to keep track of which
tions have been met. Note that the SAX parser will have to invoke both methods more than once bef
conditions for printing the price are met.

public void startElement(..., String elementName, ...){

if(elementName.equals("name")){

inName = true;

} else if(elementName.equals("price") && inMochaJava){

inPrice = true;

inName = false;

}

}

public void characters(char [] buf, int offset, int len) {

String s = new String(buf, offset, len);

if (inName && s.equals("Mocha Java")) {

inMochaJava = true;

inName = false;

} else if (inPrice) {

System.out.println("The price of Mocha Java is: " + s);

inMochaJava = false;

inPrice = false;

 }

}

}

Once the parser has come to the Mocha Java coffee element, here is the relevant state after the
ing method calls:

next invocation ofstartElement -- inName is true

next invocation ofcharacters -- inMochaJava is true

next invocation ofstartElement -- inPrice is true

next invocation ofcharacters -- prints price

The SAX parser can perform validation while it is parsing XML data, which means that it checks
the data follows the rules specified in the XML document’s DTD. A SAX parser will be validating if i
Page 5

DTD

ter-
e you

access
can

docu-

Using
ener-
next
modi-

list
frag-

de
cause

o get a

d
data, so
nting
created by aSAXParserFactory object that has had validation turned on. This is done for theSAX-

ParserFactory objectfactory in the following line of code .

factory.setValidating(true);

So that the parser knows which DTD to use for validation, the XML document must refer to the
in its DOCTYPE declaration. TheDOCTYPE declaration should be similar to this:

<!DOCTYPE PriceList SYSTEM "priceList.DTD">

The DOM API
The Document Object Model (DOM) API, defined by the W3C DOM Working Group, is a set of in

faces for building an object representation, in the form of a tree, of a parsed XML document. Onc
build the DOM, you can manipulate it with DOM methods such asinsert andremove, just as you would
manipulate any other tree data structure. Thus, unlike a SAX parser, a DOM parser allows random
to particular pieces of data in an XML document. Another difference is that with a SAX parser, you
only read an XML document, but with a DOM parser, you can build an object representation of the
ment and manipulate it in memory, adding a new element or deleting an existing one.

In the previous example, we used a SAX parser to look for just one piece of data in a document.
a DOM parser would have required having the whole document object model in memory, which is g
ally less efficient for searches involving just a few items, especially if the document is large. In the
example, we add a new coffee to the price list using a DOM parser. We cannot use a SAX parser for
fying the price list because it only reads data.

Let’s suppose that you want to add Kona coffee to the price list. You would read the XML price
file into a DOM and then insert the new coffee element, with its name and price. The following code
ment creates aDocumentBuilderFactory object, which is then useds to create theDocumentBuilder object
builder. The code then calls theparse method onbuilder, passing it the filepriceList.xml.

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.parse("priceList.xml");

At this point,document is a DOM representation of the price list sitting in memory. The following co
fragment adds a new coffee (with the name "Kona" and the price 13.50) to the price list document. Be
we want to add the new coffee right before the coffee whose name is "Mocha Java", the first step is t
list of the name elements and iterate through the list to find "Mocha Java". Using theNode interface
included in theorg.w3c.dom package, the code then creates aNode object for the new coffee element an
also new nodes for the name and price elements. The name and price elements contain character
the code creates aTextNode object for each of them and appends the text nodes to the nodes represe
thename andprice elements.

NodeList list = document.getElementsByTagName("name");

Node thisNode = list.getItem("name");

// loop through list

Node thisChild = thisNode.getChildNode();

if(thisNode.getFirstChild() instanceof org.w3c.dom.TextNode) {
Page 6

u call
ake

ent
name.
ich defi-

t ele-

ac-

for
sfor-
String data = thisNode.getFirstChild().getData();

}

if (data.equals("Mocha Java")) { // new node will be inserted before Mocha Java

Node newNode = document.createElement("coffee");

Node nameNode = document.createElement("name");

TextNode textNode = document.createTextNode("Kona");

nameNode.appendChild(textNode);

Node priceNode = document.createElement("price");

TextNode tpNode = document.createTextNode("13.50");

priceNode.appendChild(tpNode);

newNode.appendChild(nameNode);

newNode.appendChild(priceNode);

thisNode.insertBefore(newNode, thisNode);

}

You get a DOM parser that is validating the same way you get a SAX parser that is validating: Yo
setValidating(true) on a DOM parser factory before using it to create your DOM parser, and you m
sure that the XML document being parsed refers to its DTD in the DOCTYPE declaration.

XML Namespaces
All the names in a DTD are unique, thus avoiding ambiguity. However, if a particular XML docum

references more than one DTD, there is a possibility that two or more DTDs contain the same
Therefore, the document needs to specify a namespace for each DTD so that the parser knows wh
nition to use when it is parsing an instance of a particular DTD.

There is a standard notation for declaring an XML Namespace, which is usually done in the roo
ment of an XML document. In the following example namespace declaration, the notationxmlns identifies
nsName as a namespace, andnsName is set to the URL of the actual namespace:

<priceList xmlns:nsName="myDTD.dtd"

xmlns:otherNsName="myOtherDTD.dtd">

...

</priceList>

Within the document, you can specify which namespace an element belongs to as follows:

<nsName:price> ...

To make your SAX or DOM parser able to recognize namespaces, you call the methodsetName-

spaceAware(true) on yourParserFactory instance. After this method call, any parser that the parser f
tory creates will be namespace aware.

The XSLT API
XSLT (XSL Transformations), defined by the W3C XSL Working Group, describes a language

transforming XML documents into other XML documents or into other formats. To perform the tran
Page 7

SL).
tions
ent or

APIs
two
ulting

code

n

e, each
code.

fix fol-
t indi-
mation, you usually need to supply a stylesheet, which is written in the XML Stylesheet Language (X
The XSL stylesheet specifies how the XML data will be displayed. XSLT uses the formatting instruc
in the stylesheet to perform the transformation. The converted document can be another XML docum
a document in another format, such as HTML.

JAXP supports XSLT with thejavax.xml.transform package, which allows you to plug in an XSLT
transformer to perform transformations. The subpackages have SAX-, DOM-, and stream-specific
that allow you to perform transformations directly from DOM trees and SAX events. The following
examples illustrate how to create an XML document from a DOM tree and how to transform the res
XML document into HTML using an XSL stylesheet.

Transforming a DOM Tree to an XML Document
To transform the DOM tree created in the previous section to an XML document, the following

fragment first creates aTransformer object that will perform the transformation.

TransformerFactory transFactory = TransformerFactory.newInstance();

Transformer transformer = transFactory.newTransformer();

Using the DOM tree root node, the following line of code constructs aDOMSource object as the source
of the transformation.

DOMSource source = new DOMSource(document);

The following code fragment creates aStreamResult object to take the results of the transformatio
and transforms the tree to XML.

File newXML = new File("newXML.xml");

FileOutputStream os = new FileOutputStream(newXML);

StreamResult result = new StreamResult(os);

transformer.transform(source, result);

Transforming an XML Document to an HTML Document
You can also use XSLT to convert the new XML document,newXML.xml, to HTML using a stylesheet.

When writing a stylesheet, you use XML Namespaces to reference the XSL constructs. For exampl
stylesheet has a root element identifying the stylesheet language, as shown in the following line of

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

When referring to a particular construct in the stylesheet language, you use the namespace pre
lowed by a colon and the particular construct to apply. For example, the following piece of styleshee
cates that the name data must be inserted into a row of an HTML table.

<xsl:template match="name">

<tr><td>

<xsl:apply-templates/>

</td></tr>

</xsl:template>
Page 8

tries

y the

and

e

The following stylesheet specifies that the XML data is converted to HTML and that the coffee en
are inserted into a row in a table.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="priceList">

<html><head>Coffee Prices</head>

<body>

<table>

<xsl:apply-templates />

</table>

</body>

</html>

</xsl:template>

<xsl:template match="name">

<tr><td>

<xsl:apply-templates />

</td></tr>

</xsl:template>

<xsl:template match="price">

<tr><td>

<xsl:apply-templates />

</td></tr>

</xsl:template>

</xsl:stylesheet>

To perform the transformation, you need to obtain an XSLT transformer and use it to appl
stylesheet to the XML data. The following code fragment obtains a transformer by instantiating aTrans-

formerFactory object, reading in the stylesheet and XML files, creating a file for the HTML output,
then finally obtaining theTransformer objecttransformer from theTransformerFactory objecttFactory.

TransformerFactory tFactory = TransformerFactory.newInstance();

String stylesheet = "prices.xsl";

String sourceId = "newXML.xml";

File pricesHTML = new File("pricesHTML.html");

FileOutputStream os = new FileOutputStream(pricesHTML);

Transformer transformer = tFactory.newTransformer(new StreamSource(stylesheet));

The transformation is accomplished by invoking thetransform method, passing it the the data and th
output stream.

transformer.transform(new StreamSource(sourceId), new StreamResult(os));
Page 9

and
of the

n build a
te XML

XB,
stan-

sses.
B.
sses

ds to

lled

and a
inding

prop-
JAXB

JAXB provides a fast, convenient way to create a two-way mapping between XML documents
Java objects. Given a DTD, the JAXB compiler generates a set of Java classes, which contain all
code to parse XML documents based on the schema. A developer using the generated classes ca
Java object tree representing an XML document, manipulate the content of the tree, and re-genera
documents from the tree.

To start using a JAXB application all you need is a schema, which for the current version of JA
must be a DTD. You can write your own DTD, or you can obtain it from somewhere else, such as a
dard DTD repository accessed through JAXR.

Once you have your DTD, you bind it to a set of classes by performing these steps:

1. Writing a binding schema, which contains the instructions on how to bind the schema to cla
The binding schema is written in a XML-based binding language, which is included with JAX

2. Running the schema compiler, which takes a DTD and a binding schema and generates cla
from them. Each class that the schema compiler generates hasget andset methods. When an
instance of the class is created and initialized with data, you can use these accessor metho
access the data. A set of accessor methods is called a property.

Generating Classes From a DTD
As an example of generating classes from a DTD, consider the following DTD, which is ca

priceList.dtd.

<!ELEMENT priceList (coffee)+ >

<!ELEMENT coffee (name, price) >

<!ELEMENT name (#PCDATA) >

<!ELEMENT price (#PCDATA) >

The JAXB schema compiler is powerful enough to make reasonable assumptions from the DTD
binding schema that specifies only the root element of the document. All you need to specify in the b
schema is that theprice element is converted to a property that returns and accepts aBigDecimal:

...

<element name="priceList" type="class" class="PriceList" root="true" />

<element name="price" type="value" convert="BigDecimal" />

<conversion name="BigDecimal" type="java.math.BigDecimal" />

...

From this DTD and binding schema, the schema compiler generates aPriceList class and aCoffee
class.

ThePriceList class includes a constructor and aList property, to which thecoffee element is bound.
TheCoffee class contains a constructor and a property to represent the name of the coffee and a

erty to represent the price. The price accessor methods are:
Page 10

ng.
ess of
nerat-

t repre-
n ele-
rated
ways to

the
XML

te the
using
BigDecimal getPrice();

void setPrice(BigDecimal x);

Both PriceList and Coffee also contain methods for unmarshalling, validating, and marshalli
Unmarshalling is the process of building an object representation of XML data. Validation is the proc
checking whether the objects conform to the DTD’s specifications. Marshalling is the process of ge
ing XML data from an object representation.

Building Object Representations of XML Data
After generating your classes, you can write a Java application using the classes and build objec

sentations of XML documents that are valid with respect to the DTD. Each object corresponds to a
ment in the XML document. Similarly, each object is an instance of a class from the set of gene
classes. Because the objects map to both the document and the classes, you have two different
build the Java object tree: by unmarshalling a valid XML document or by instantiating objects from
classes. In this way, JAXB allows you to both process existing XML documents and create new
data by instantiating the generated classes.

Suppose you have this XML document:

<priceList>

<coffee>

<name>Arabica</name>

<price>13.50</price>

</coffee>

<coffee>

<name>Mocha Java</name>

<price>11.95</price>

</coffee>

<coffee>

<name>Sumatra</name>

<price>12.50</price>

</coffee>

</priceList>

To unmarshal this XML document, you create an input stream from it and invoke theunmarshal

method of thePriceList class:

FileInputStream fis = new FileInputStream("priceList.xml");

PriceList myPrices = PriceList.unmarshal(fis);

You now have a Java object tree with themyPrices object as the root of the tree.
Suppose you want to create your own list of coffee prices as an XML document. You first crea

object tree by instantiation and then marshal the tree to an XML document. To create an object tree
instantiation, create a newPriceList object, get the list ofCoffee objects from it, create a newCoffee
object, and add it to the list:
Page 11

you
data

ll you

arshal
XML

tput

ent is
te Java
you to
pplica-
s it. In
With
tually
PriceList myNewPrices = new PriceList();

List listOfCoffees = myNewPrices.getCoffees();

Coffee zCoffee = new Coffee();

zCoffee.setName("Zapoteca");

zCoffee.setPrice("15.00");

listOfCoffees.add(zCoffee);

Once you have the XML data in the form of an object tree, you can work with the data just as
would with any Java object. In this way, JAXB provides both a Java programming interface of XML
and allows seamless integration of XML data into Java applications.

Accessing Data From the Object Tree
Suppose that you want to change the price of Mocha Java in the first object tree you created. A

do is find Mocha Java in the list of coffees and set the new price by invokingsetPrice on theCoffee
object:

List coffees = myPrices.getCoffees();

for (ListIterator i = coffees.listIterator(); i.hasNext();) {

Coffee myCoffee = (Coffee) i.next();

if (myCoffee.getName().equals("Mocha Java")) {

myCoffee.setPrice("12.50");

}

}

Writing XML Documents From the Object Tree
Whether you used unmarshalling or instantiation to build your object representation, you can m

the objects out to an XML document, which means that JAXB also allows you to create brand new
documents that are valid with respect to the schema.

To marshal your modified object tree to a new XML document, create an XML file and an ou
stream for it and invoke theunmarshal method on themyNewPrices object:

File newPrices = new File("newPriceList.xml");

FileOutputStream fos = new FileOutputStream(newPrices);

myNewPrices.marshal(fos);

Summary
JAXB essentially provides a bridge between XML and Java technology. Just as an XML docum

an instance of a schema, a Java object is an instance of a class. Thus, JAXB allows you to crea
objects at the same conceptual level as the XML data. Representing your data in this way allows
manipulate it in the same manner as you would manipulate Java objects, making it easier to create a
tions to process XML data. Once you have your data in the form of Java objects, it is easy to acces
addition, after working with the data, you can write the Java objects to a new, valid XML document.
the easy access to XML data that JAXB provides, you are free to write the applications that will ac
use the data, rather than spend time writing code to parse and process the data.
Page 12

on the
s your
hould
at is not

can
you
r API
ents,
ot.
lim-

capa-
her
an have
t with a
namic
flexi-
is very
esn’t

advan-
TD,

nsider
dvan-
Differences Between JAXP and JAXB
JAXP and JAXB serve very different purposes. Which architecture or API you choose depends

requirements of your application. One advantage of JAXP is that it allows you to parse and proces
data from the same set of APIs. If you only want to grab a piece of data from a large document, you s
use a SAX parser because it parses data as a stream, which is very fast. If you have a document th
too large, and you want to add or remove data from it, you should use DOM. Although a DOM tree
occupy a large amount of memory, the DOM API includes common tree-manipulation functions. If
want to transform the data to another format, you should use JAXP, which includes the transforme
and an XSLT transform in the reference implementation that allows you to transform XML docum
SAX events, or DOM trees. JAXP also allows you the flexibility of choosing to validate the data or n

If you want to build an object representation of XML data, but you need to get around the memory
itations of DOM, you should use JAXB. Classes created with JAXB do not include tree-manipulation
bility, which is one factor contributing to the small memory footprint of a JAXB object tree. Anot
advantage of this kind of object tree is that you can append trees together such that a child object c
more than one parent object. In addition, processing data with JAXB is about as fast as processing i
SAX parser because the generated classes contain all of the DTD logic, thereby avoiding the dy
interpretation that a SAX parser must perform. The fact that JAXB requires a DTD does make it less
ble than JAXP, but this requirement guarantees that only valid data is processed. This guarantee
important, especially if an application is receiving the data from another source. If an application do
have the DTD, it can’t determine the meaning of the data and how it should be processed. Another
tage JAXB has over JAXP is that it allows you to specify how your code is generated from your D
including the data types that an element binding will accept and return.

Clearly, JAXP and JAXB have their own advantages and disadvantages, which you need to co
when choosing an XML data processing API or architecture. These two bullet lists summarize the a
tages of JAXB and JAXP so that you can decide which one is right for you.

Use JAXB when you want to:

• Access data in memory, but do not need tree manipulation capabilities
• Process only data that is valid
• Convert data to different types
• Generate classes based on a DTD
• Build object representations of XML data.

Use JAXP when you want to:

• Have flexibility with regard to the way you access the data: either serially with SAX or
randomly in memory with DOM

• Use your same processing code with documents based on different DTDs
• Parse documents that are not necessarily valid
• Apply XSLT transforms
• Insert or remove objects from an object tree that represents XML data
Page 13

nter-
nd can

behind-
e JAXM
ough
der’s mes-
s also

ails like
. A mes-
empt at
") is
XM
ything

ervlet
which
peration,

us. When
saging
tion and

rt. The

ultiple
nt part.
ind of

nnec-

n. The

as an
.

JAXM

Overview
The JavaTM API for XML Messaging (JAXM) provides a standard way to send messages over the I

net from the Java platform. It is based on the SOAP 1.1 and SOAP with Attachments specifications a
be extended to work with higher level messaging protocols such as ebXML or BizTalk.

In order to do JAXM messaging, a business uses a messaging provider service, which does the
the-scenes work required to transport and route messages. The messaging provider implements th
API, similar to the way a driver for a database implements the JDBC API. All JAXM messages go thr
the messaging provider, so when a business sends a message, the message first goes to the sen
saging provider, then to the recipient’s messaging provider, and finally to the intended recipient. It i
possible to route a message to go to intermediate recipients, calledactors, before it goes to the ultimate
destination.

Because all messages go through it, a messaging provider can take care of housekeeping det
assigning message identifiers and keeping track of whether a message has been delivered before
saging provider can also try resending a message that did not reach its destination on the first att
delivery. The beauty of a messaging provider is that the client using JAXM technology ("JAXM client
totally unaware of what the provider is doing in the background. The JAXM client simply makes JA
method calls, and the messaging provider, working with the container, if there is one, makes ever
happen.

Though it is not required, JAXM messaging usually takes place within a container, generally a s
or a J2EETM container. One of the advantages of being in a container is that you can have a listener,
makes it possible to receive messages asynchronously. The listener receives the message as one o
and the recipient sends a reply as a subsequent operation, thus making the messaging asynchrono
there is no listener, messages are sent via a method that blocks until it gets a reply. This kind of mes
is synchronous, meaning that sending a message and receiving a reply are all one continuous opera
that nothing else can happen until the operation is completed.

A JAXM message is made up of two parts, a required SOAP part and an optional attachment pa
SOAP part, which consists of aSOAPEnvelope object containing aSOAPHeader object and aSOAPBody
object, can hold an XML document as the content of the message being sent. If you want to send m
documents or content that is not an XML document, your message will need to contain an attachme
There is no limitation on the content in the attachment part, so you can send images or any other k
content.

Creating a Message

Getting a Connection to the Messaging Provider
The first thing a JAXM client must do is get a connection to its messaging provider. It uses the co

tion to create aMessageFactory object, which can then be used to createMessage objects. Once the mes-
sage has been populated, the connection will be used again to send the message.

The following code demonstrates getting a message factory and using it to create a connectio
first two lines use the JNDI API to retrieve the appropriateConnectionFactory object from the naming ser-
vice where it was registered with the name "CoffeeBreakProvider". When this logical name is passed
argument, the methodlookup returns theConnectionFactory object to which the logical name was bound
Page 14

the

am-
given

s
-

l-

add

urce

u-

case,

es-
t

The value returned is a JavaObject, which must be narrowed to aConnectionFactory object so that it can
be used to create a connection. The third line uses a JAXM method to actually get the connection.

Context ctx = getInitialContext();

ConnectionFactory cf = (ConnectionFactory)ctx.lookup("CoffeeBreakProvider");

Connection con = cf.getConnection();

TheConnection instancecon represents a connection to The Coffee Break’s messaging provider. In
following lines of code, it is used to create aMessageFactory object, which is then used to create aMessage

object.

MessageFactory messageFactory = con.getMessageFactory();

Message m = messageFactory.createMessage();

Part of the flexibility of the JAXM API is that it allows a specific usage of a SOAP header. For ex
ple, ebXML or BizTalk protocols can be built on top of SOAP messaging. This usage of SOAP by a
standards group or industry is called aprofile. If the methodgetMessageFactory is given no argument, as
was done in the preceding code fragment, it will return aMessageFactory object that produces message
that use the base SOAP profile. Thus, theMessage objectm created in the preceding line of code will sup
port a basic SOAP message. If a profile is passed to the methodgetMessageFactory, theMessage objects
created by the resultingMessageFactory object will support the specified profile. For example, in the fo
lowing code fragment,m2 will support the messaging profile that is supplied togetMessageFactory.

MessageFactory messageFactory2 = con.getMessageFactory(<profile>);

Message m2 = messageFactory2.createMessage();

Each of the newMessage objectsm andm2 automatically contains the requiredSOAPPart object, but its
header and body do not yet have any content. The following sections will illustrate typical ways to
content.

Populating a Message
There are two ways to add content to a message:

1. Passing ajavax.xml.transform.Source object to aSOAPEnvelope object. TheSource object
can be aSAXSource object, aDOMSource object, or aStreamSource object. TheSource object
contains the content for the message and also the information needed for it to act as so
input. A StreamSource object will contain the content as an XML document; theSAXSource or
DOMSource object will contain content and instructions for transforming it into an XML doc
ment.

2. Creating separate elements containing the content and adding them individually. In this
you build an XML document usingString, COMMENT, andCDATA objects as needed.

Populating the SOAP Part of a Message
As stated earlier, all messages are created with aSOAPPart object, which has aSOAPEnvelope object

containing aSOAPHeader object and aSOAPBody object. One way to add content to the SOAP part of a m
sage is to create aSOAPHeaderElement object or aSOAPBodyElement object and add an XML document tha
Page 15

itial-

nt, it
ain any-
on-

text of
you build with String, CDATA, andCOMMENT objects. Another way is to add content to theSOAPEnvelope

object by passing it ajavax.xml.transform.Source object, which may be aSAXSource, DOMSource, or
StreamSource object.

The following code fragment illustrates adding content as aDOMSource object. The first step is always
to get theSOAPPart object from theMessage object and use it to get theSOAPEnvelope object.

SOAPPart soapPart = m.getSOAPPart();

SOAPEnvelope soapEnvelope = soapPart.getSOAPEnvelope();

Next the code builds the XML document to be added. It uses aDocumentBuilderFactory object to get
aDocumentBuilder object. Then it parses the given file to produce the document that will be used to in
ize a newDOMSource object. Finally, the code passes theDOMSource objectdomSource to theSOAPEnvelope
object.

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse("file:///foo.bar/soap.xml");

DOMSource domSource = new DOMSource(doc);

soapEnvelope.setContent(domsrc);

Populating the Attachment Part of a Message
A Message object may have no attachment parts, but if it has anything that is not an XML docume

must have an attachment part. There may be any number of attachment parts, and they may cont
thing from plain text (including XML documents) to image files. In the following code fragment, the c
tent is an image in a JPEG file, whose URL is used to initialize thejavax.activation.DataHandler object
dh. TheMessage objectm creates theAttachmentPart objectattachPart, which is initialized with the data
handler containing the URL for the image. Finally, the message addsattachPart to itself.

URL url = new URL("http://foo.bar/img.jpg");

DataHandler dh = new DataHandler(url);

AttachmentPart attachPart = m.createAttachmentPart(dh);

m.addAttachmentPart(attachPart);

Sending a Message
Once you have populated aMessage object, you are ready to send it by using aConnection object (a

connection to your messaging provider). If messaging is asynchronous, that is, being done in the con
a container such as a servlet or a J2EE container, the methodsend is used. If the application sending the
message is not running in a container, which means that messaging is synchronous, the methodcall is
used. The parameters to both methods are (1) theMessage object that is being sent and (2) theEndpoint
object representing the destination to which it is being sent.

The following code fragment sends the message asynchronously because it uses the methodsend. It
creates anEndpoint objectendPoint from a URI for the intended recipient and then passesendPoint and
theMessage objectm to the methodsend.
Page 16

.

Endpoint endPoint = new Endpoint("http://foo.bar/Service");

con.send(m, endPoint);

If your application is not running in a container, you need to use the methodcall to send a message
This method takes the same parameters as the methodsend, but, unlikesend, it will block until it receives
a reply and returns it, as shown in the following line of code.

Message reply = con.call(m, endPoint);
Page 17

ness
use they
elopers
at are
I).
y might
t others
d two

r form.

allow
ed for
ing lan-

y are

r itself
pts to

en
e

JAXR

Overview
The JavaTM API for XML Registries (JAXR) provides a convenient way to access standard busi

registries over the Internet. Business registries are often described as electronic yellow pages beca
contain listings of businesses and the products or services the businesses offer. JAXR gives dev
writing applications in the Java programming language a uniform way to use business registries th
based on open standards (such as ebXML) or industry consortium-led specifications (such as UDD

Businesses can register themselves with a registry or discover other businesses with whom the
want to do business. In addition, they can submit material to be shared and search for material tha
have submitted. Standards groups have developed DTDs for particular kinds of XML documents, an
businesses might, for example, agree to use the DTD for their industry’s standard purchase orde
Because the DTD is stored in a standard business registry, both parties can use JAXR to access it.

Registries are becoming an increasingly important component of web services because they
businesses to collaborate with each other dynamically in a loosely coupled way. Accordingly, the ne
JAXR, which enables enterprises to access standard business registries from the Java programm
guage, is also growing.

Using JAXR
The following sections give examples of two of the typical ways a business registry is used. The

meant to give you an idea of how to use JAXR rather than to be complete or exhaustive.

Registering a Business
An organization that uses the Java platform for its electronic business would use JAXR to registe

in a standard registry. It would supply its name, a description of itself, and some classification conce
facilitate searching for it. This is shown in the following code fragment, which first creates theRegistry-

Service objectrs and then uses it to create theBusinessLifeCycleManager objectlcm. The business, a
chain of coffee houses called The Coffee Break, is represented by theOrganization objectorg, to which
The Coffee Break adds its name, a description of itself, and some categories for its classification. Thorg,
which now contains the properties and classification concepts for The Coffee Break is added to thCol-

lection objectorgs. Finally, orgs is saved bylcm, which will manage the life cycle of theOrganization
objects contained inorgs.

RegistryService rs = connection.getRegistryService();

BusinessLifeCycleManager lcm = rs.getBusinessLifeCycleManager();

Collection orgs = new ArrayList();

while (...) {

 Organization org = new Organization();

 org.setName("The Coffee Break");

 org.setDescription("Purveyer of only the finest coffees. Established 1895");

 Collection classificationConcepts = new ArrayList();

 classificationConcepts.add(new Key(<key for Industry/Food Manufacturing/

Other Food Manufacturing/Coffee And Tea Manufacturing concept>));
Page 18

gment

possi-

uments

o one

ode
is an
 classificationConcepts.add(new Key(<key for Geography/North America concept>));

 org.addClassifications(classificationConcepts);

 orgs.add(org);

}

lcm.saveOrganizations(orgs);

Searching a Registry
A business can also use JAXR to search a registry for other businesses. The following code fra

uses theBusinessQueryManager objectbqm to search The Coffee Break. Beforebqm can invoke the method
findOrganizations, the code needs to define the search criteria to be used. In this case, three of the
ble six search parameters are supplied tofindOrganizations; becausenull is supplied for the third, fifth,
and sixth parameters, those criteria are not used to limit the search. The first, second, and fourth arg
are allCollection objects, withfindQualifiers andnames being defined here. The only element infind-

Qualifiers is aString specifying that no organization be returned unless its name is an exact match t
of the names in thenames parameter. This parameter, which is also aCollection object with only one ele-
ment, says that businesses with "Coffee" in their names are a match. The otherCollection object isclas-
sificationConcepts, which was defined when The Coffee Break registered itself. The previous c
fragment, in which the industry and geographical location for The Coffee Break were provided,
example of defining classification concepts.

BusinessQueryManager bqm = rs.getBusinessQueryManager();

//Define find qualifiers

Collection findQualifiers = new ArrayList();

findQualifiers.add(BusinesQueryManager.exactNameMatch);

Collection names = new ArrayList();

names.add("%Coffee%"); //Find orgs with name containing ’Coffee’

//Find using only the name and the classification concepts

BulkResponse response = bqm.findOrganizations(findQualifiers, names, null,

classificationConcepts, null, null);

Collection orgs = response.getCollection();

JAXR also supports using an SQL query to search a registry. This is done using anSQLQueryManager

object, as the following code fragment demonstrates.

SQLQueryManager sqm = rs.getSQLQueryManager();

BulkResponse response2 = sqm.submitQuery("SELECT id FROM RegistryEntry WHERE

name LIKE %Coffee% AND majorVersion >= 1 AND

(majorVersion >= 2 OR minorVersion >= 3)");

TheBulkResponse objectresponse2 will contain a value forid (a uuid) for each entry inRegistryEn-
try that has Coffee in its name and also has a version number of 1.3 or greater.
Page 19

n, the
you are

istries,
To ensure interoperable communication between a JAXR client and a registry implementatio
messaging is done using JAXM. This is done completely behind the scenes, so as a user of JAXR,
not even aware of it.

Because JAXM supports all the major registry standards, you can use it to access a variety of reg
including ebXML and UDDI registries.
Page 20

Page 21

JAX-RPC

Overview
The JavaTM API for XML-based RPC (JAX-RPC) makes it possible to write an application in the Java

programming language that uses XML to make a remote procedure call (RPC).
The Java programming language already has two other APIs for making remote procedure calls, Java

IDL and Remote Method Invocation (RMI). All three have an API for marshalling and unmarshalling
arguments and for transmitting and receiving procedure calls. The difference is that JAX-RPC is based on
XML and is geared to web services. Java IDL is based on the Common Object Request Broker Architec-
ture (CORBA) and uses the Object Management Group’s Interface Definition Language (OMG IDL). RMI
is based on RPC where both the method calls and the methods being invoked are in the Java programming
language--although with RMI over IIOP, the methods being invoked may be in another language. Sun will
continue its support of CORBA and RMI in addition to developing JAX-RPC, as each serves a distinct
need and has its own set of users.

All varieties of RPC are fairly complex, involving the mapping and reverse mapping of data types and
the marshalling and unmarshalling of arguments. However, these take place behind the scenes and are not
visible to the user. JAX-RPC continues this model, which means that a client using XML-based RPC from
the Java programming language is not required to work with XML or do any mapping directly.

Using JAX-RPC
JAX-RPC makes using a Web service easier, and it also makes developing a Web service easier, espe-

cially if you use the J2EE platform. An RPC-based Web service is basically a collection of procedures that
can be called by a remote client over the Internet. The service itself is a server application deployed on a
server-side container that implements the procedures that are available for clients to call. For example, a
typical RPC-based Web service is a stock quote service that takes a SOAP request for the price of a speci-
fied stock and returns the price via SOAP.

A Web service needs to make itself available to potential clients, which it can do, for instance, by
describing itself using the Web Services Description Language (WSDL). A consumer (Web client) can
then do a lookup of the WSDL document to access the service. A consumer using the Java programming
language uses JAX-RPC to send its request to the service, which may or may not have been defined and
deployed on a Java platform. The converse is also possible, that is, a client using another programming lan-
guage can send its request to a service that has been defined and deployed on a Java platform.

Although JAX-RPC implements a remote procedure call as a request and a response SOAP message, a
user of JAX-RPC is shielded from this level of detail. So, underneath the covers, JAX-RPC is actually a
specialized form of SOAP messaging. In contrast, JAXM is a robust form of SOAP messaging, providing
the developer with its full richness.

The following list includes features that JAXM can provide and that RPC, including JAX-RPC, does
not generally provide:

• Asynchronous messaging
• Routing of a message to more than one party
• Reliable messaging with features such as guaranteed delivery

JAX-RPC is the better choice for applications that wish to avoid the complexities of SOAP messaging
and where communication using the RPC model is a good fit. The important thing is that whether you use
JAXM or JAX-RPC, you can conveniently do XML messaging using the Java programming language.

work
ays of
t out
ne API

the line
et their
o carry
pany’s
bXML

s mes-
under-

for-
ry will

butors
so that

ith its
the fig-
price
nd that

gistry
ey all
nerate a
would
as an
ets the

e engi-
XML

ntains
r will
Sample Scenario

Overview
The following scenario is an example of how the Java APIs for XML might be used and how they

together. Part of the richness of the Java APIs for XML is that in many cases they offer alternate w
doing something and thus let you tailor your code to meet individual needs. This section will poin
some instances in which an alternate API could have been used and will also give the reasons why o
or the other might be a better choice.

Scenario
Suppose that the owner of a chain of coffee houses, called The Coffee Break, wants to expand

of coffees that he sells. He instructs his business manager to find some new coffee suppliers and g
wholesale prices. The Coffee Break can analyze the prices and decide which new coffees it wants t
and which companies it wants to buy them from. The business manager assigns the task to the com
software engineer, who decides that the best way to locate new coffee suppliers is to search the e
business registry, where The Coffee Break has already registered itself.

The engineer uses JAXR to send a query searching for wholesale coffee suppliers. JAXR send
sages using JAXM in the background, which ensures that the registry will be able to receive and
stand it.

The ebXML registry will receive the query and apply the search criteria in the JAXR code to the in
mation it has about the organizations registered with it. When the search is completed, the regist
send back a list of the distributors that sell wholesale coffee.

The engineer’s next step is to draft a request for price lists and send it to each of the coffee distri
using JAXM. She writes an application that gets a connection to the company’s messaging service
she can send the requests. She then creates a JAXM message, adds the request, and sends it.

Each coffee distributor receives the request, and before sending out current prices, checks w
stock quote service using JAX-RPC to get the latest quotes for the relevant coffee futures. Based on
ures they get back, the distributors send The Coffee Break their newly revised prices in an XML
sheet. The vendors use XML because that way they can use a format that is convenient for them a
their buyers can process easily even if they are using many different information systems.

Compare Prices and Order Coffees
The engineer decides to use JAXB to process the price lists. The list of distributors that the re

returned contained information for getting the DTDs that the distributors use, and conveniently, th
use a standard form for the price list. Because they all use one standard DTD, the engineer can ge
set of classes from that DTD that applies to the price lists from all of the suppliers. (Otherwise, she
have used SAX or DOM to do the processing.) The engineer’s application will work with each coffee
object that has a price property and a name property. After instantiating the classes, the application g
prices from theCoffee objects and compares the prices quoted by the different vendors.

When the owner and business manager decide which suppliers to do business with, based on th
neer’s price comparisons, they are ready to send an order. With JAXB, the engineer creates a new
order form based on the classes generated from the price list DTD. This new order form, which co
only the coffees that the owner wants to buy, is then sent to the suppliers via JAXM. Each supplie
acknowledge receipt of the order via JAXM.
Page 22

lish a
ds to
g prices
e price
line

cesses

licks the

olo-
plat-
ers of
Selling Coffees on the Internet
Meanwhile, The Coffee Break has been preparing for its expanded coffee line. It will need to pub

new price list/order form in HTML for its web site. But before that can be done, the company nee
determine what prices it will charge. The engineer uses the same objects she created for comparin
and composing the wholesale order form to access each price and multiply it by 125% to arrive at th
that The Coffee Break will charge. With a few modifications, the list of retail prices will become the on
order form.

With the objects containing the new retail prices, the engineer can use JavaServer PagesTM (JSPTM) tech-
nology to create an HTML order form that customers can use to order coffee online. The engineer ac
the objects from the JSP page and inserts the name and the price of eachCoffee object into an HTML table
on the JSP page. The customer enters the quantity of each coffee he or she wants to order and c
Submit button to send the order.

Conclusion
Although this scenario is simplified for the sake of brevity, it illustrates how pervasive XML techn

gies are becoming in the world of web services. And now, with the Java APIs for XML and the J2EE
form, it keeps getting easier to implement web services and to write applications that are the consum
web services.
Page 23

24

us
r as a

two

busi-
er.

M is
s a
to

d

ased

-

des

,
b

Glossary

asynchronous Loosely coupled, occurring at different times. In asynchrono
messaging, a message is sent, and the reply is received some time late
separate transaction. See synchronous.

B2B Business-to-business A term used to describe web services between
businesses, such as between a wholesale supplier and a retail outlet.

B2C Business-to-customer A term used to describe web services between a
ness and an end user, such as between a retail outlet and a retail custom

DOM Document Object Model A standard API for parsing XML data into an
object-tree representation and manipulating the contents of the tree. DO
being developed through the World Wide Web Consortium. JAXP provide
Java programming interface for the DOM API and allows an application
plug in a compliant DOM parser.

DTD Document Type Definition A simple type of schema that defines the kin
of information in a particular type of XML document.

ebXML Electronic Business XML An open public initiative that is developing
specifications aimed at enabling a single global electronic marketplace b
on using XML and the Internet.

HTML HyperText Markup Language A markup language used for format
ting web pages.

HTTP HyperText Transfer Protocol A protocol for transfering data over the
Internet.

J2EETM JavaTM 2 Platform, Enterprise Edition The Java platform that defines
the standard for multitier enterprise computing. The J2EE platform inclu
the J2SE platform.

J2SETM JavaTM 2 Platform, Standard Edition The Java platform for client-side
computing.

JAX Pack The upcoming bundle of XML-related Java APIs (JAXP, JAXB
JAXM, JAXR, and JAX-RPC). The JAX Pack will be included in the We
Services Pack.

CHAPTER25

ge.
ler
sses
on

P 1.1
as

for
le

e.

in
, the

ey
nter-

c-

usi-
. A

sses.

ses
ML

3A4
JAXB JavaTM Architecture for XML Binding The architecture for converting
data in an XML document to objects in the Java programming langua
Given an XML document’s schema (for example, a DTD), the JAXB compi
will produce classes that correspond to the DTD. The generated cla
include methods that allow building an object tree with XML data based
the DTD and writing the tree out to a new XML document.

JAXM Java TM API for XML Messaging The standard API for sending SOAP
messages using the Java programming languge. JAXM is based on SOA
with Attachments and provides the ability to layer other profiles, such
ebXML or BizTalk, on top of it.

JAXP JavaTM API for XML Processing A comprehensive API for parsing and
processing XML documents. JAXP includes support for the Simple API
XML Parsing (SAX), the Document Object Model (DOM), the eXtensib
Stylesheet Language for Transformations (XSLT), and XML Namespaces.

JAXR JavaTM API for XML Registries The standard API for convenient
access to Internet business registries from the Java platform.

JAX-RPC JavaTM API for XML-based RPC The standard API for sending
XML-based remote procedure calls using the Java programming languag

loosely coupledA term referring to the relationship between two businesses
which each business has no prior knowledge of, and no dependencies on
other business’s information technology infrastructure. XML is the k
enabler that allows loosely coupled businesses to communicate over the I
net and thereby conduct electronic business with each other.

OASIS Organization for the Advancement of Structured Information Stan-
dards A non-profit consortium promoting the adoption of interoperable spe
ifications of public standards, such as XML.

registry A web-based service that enables dynamic and loosely coupled b
ness-to-business collaboration by providing access to shared information
registry is sometimes compared to an electronic yellow pages for busine
See repository.

repository A data storage facility much like a database. A business registry u
a repository to store its data, such as information about businesses, X
descriptions of specific business protocols (for example, RosettaNet PIP

26

cu-

n

d
t,
AX
nd

es-
nse is
reply

ts the

ed,

age
way
.

ers
sely
AX-

o
er-
en-
,

for purchase orders), and XML schemas defining the structure of XML do
ments exchanged during a supported business process.

schema A specification of the structure of a set of XML documents. A DTD is a
example of a schema.

SAX Simple API for XML Parsing A standard API that defines an event-base
XML parser. SAX was developed by members of the XML-DEV mailing lis
and currently the OASIS standards body is continuing to develop the S
API. JAXP provides a Java programming interface for the SAX API a
allows an application to plug in a compliant SAX parser.

synchronous Tightly coupled, occurring at the same time. In synchronous m
saging, a message is sent, and nothing else can happen until the respo
sent back as part of the same process. In other words, the message and
are tightly coupled. In the JAXM API, the methodcall is used for sending a
synchronous message. It sends the message and then blocks until it ge
reply.

SOAP Simple Object Access ProtocolA lightweight XML-based protocol,
developed by the W3C, for the exchange of information in a decentraliz
distributed environment.

UDDI Universal Description, Discovery and Integration An initiative based
on standard registry services that provide Yellow, White, and Green P
business-centered functionality. It focuses on giving large organizations a
to reach out to and manage their networks of smaller business customers

web services Content and software processes that provide services to custom
over the Internet. Web services are delivered over the Internet in a loo
coupled way, using XML interfaces. For example, a service based on J
RPC is a collection of procedures that can be called by remote clients.

Web Services PackA download that will bundle together key technologies t
simplify building web services using the Java 2 Platform. It includes JavaS
verTM Faces (a standard API for creating Java Web GUIs), Tomcat (an op
source implementation of JavaServer PagesTM and Java Servlet technologies)
and JAX Pack (a bundle of the the Java APIs for XML).

WSDL Web Services Description LanguageA language that specifies an
XML format for describing a web service.

CHAPTER27

he

-
y of

e
ata

ween

re
me.

t,
m
h is

An
ting
y of
WWW World Wide Web The web of systems and the data in them that is t
Internet.

W3C World Wide Web Consortium A group of member organizations devel
oping standard protocols for web technologies to ensure interoperabilit
the Web’s languages and protocols.

XML Extensible Markup Language A markup language that describes th
hierarchical structure of content in a document. Because XML makes d
portable, it has become the standard for sharing data over the Internet bet
applications, distributed web services, and trading partners.

XML Namespaces A W3C standard for building documents that reference mo
than one DTD, more than one of which might define the same element na
JAXP provides support for XML Namespaces.

XSL eXtensible Stylesheet LanguageA language for specifying a styleshee
which provides formatting instructions for XML data. To actually transfor
an XML document using the stylesheet, an application uses XSLT, whic
an extension of XSL.

XSLT XSL Transformations A language for transforming XML documents to
other XML documents or to documents of other formats, such as HTML.
application can use XSLT to transform documents according to the format
instructions in an XSL stylesheet, but it can also use XSLT independentl
XSL.

	Introduction and Overview
	What Is XML?
	What Makes XML Portable?

	Overview of the Java APIs for XML

	JAXP
	Overview
	The SAX API
	The DOM API
	XML Namespaces

	The XSLT API
	Transforming a DOM Tree to an XML Document
	Transforming an XML Document to an HTML Document

	JAXB
	Generating Classes From a DTD
	Building Object Representations of XML Data
	Accessing Data From the Object Tree
	Writing XML Documents From the Object Tree
	Summary
	Differences Between JAXP and JAXB

	JAXM
	Overview
	Creating a Message
	Getting a Connection to the Messaging Provider

	Populating a Message
	Populating the SOAP Part of a Message
	Populating the Attachment Part of a Message

	Sending a Message

	JAXR
	Overview
	Using JAXR
	Registering a Business
	Searching a Registry

	JAX-RPC
	Overview
	Using JAX-RPC

	Sample Scenario
	Overview
	Scenario
	Compare Prices and Order Coffees
	Selling Coffees on the Internet
	Conclusion

	Glossary

