{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT 256 31 "Simulation of the Loren z System" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 50 "Restart Maple and load the linear algebra package." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 27 "De fine r.h.s. of equations." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 66 "f:=sigma*(y(t)-x(t)):g:=r*x(t)-y(t) -x(t)*z(t):h:=x(t)*y(t)-b*z(t):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 21 "Set parameter values." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "sigma: =10:b:=8/3:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "r:=24.1:" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 30 "De fine differential equations." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "de1:=diff(x(t),t)=f:de2:=dif f(y(t),t)=g:de3:=diff(z(t),t)=h:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 26 "Define initial conditions." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "ics:=[[0,1,1,1],[0,7,7,22]]:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 91 "Obtain phase plot. In this case we have co-existence of strange attractor and stable focus." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "D Eplot3d([de1,de2,de3],[x(t),y(t),z(t)],t=0..150,ics,stepsize=0.01,line colour=blue);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "r:=22:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "de1:=diff(x(t),t)=f:de2:=dif f(y(t),t)=g:de3:=diff(z(t),t)=h:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 26 "Define initial conditions." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "ics:=[[0,5,5,7.5]]:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 57 "Obtain phase plot. In this case we have t ransient chaos.." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "DEplot3d([de1,de2,de3],[x(t),y(t),z(t)],t=0.. 150,ics,stepsize=0.01,linecolour=blue);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "r:=40:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "d e1:=diff(x(t),t)=f:de2:=diff(y(t),t)=g:de3:=diff(z(t),t)=h:" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 26 "De fine initial conditions." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "ics:=[[0,1,1,1],[0,1.001,1,1]]:" }} }{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 68 "P lot time series to show sensitive dependence on initial conditions." } }{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 114 "DEplot([de1,de2,de3],[x(t),y(t),z(t)],t=140..145,ics,stepsize=0 .01,linecolour=[blue,green],scene=[t,x],maxfun=-1);" }}}}{MARK "26" 0 }{VIEWOPTS 1 1 0 1 1 1803 }