· 2.2 
LOCAL STABILITY 
In this section you will

· investigate the geometric behaviour of nonlinear systems and their linearisations close to their equilibrium points.

· learn under what conditions a nonlinear system behaves locally like its linearisation

· learn how to classify the equilibrium points

2.2.1 Linearisation theorem
The idea of linearisation is to use a linear system to approximate the behaviour of solutions of a nonlinear system near an equilibrium point We are going to investigate the equilibrium points of the linearisation and see what, if anything,  we can deduce about the equilibrium points of the nonlinear system. Can we deduce the stability of their equilibrium points?  Can we say anything about the geometric behaviour of solutions close to the equilibrium points?

Consider the nonlinear system  
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with equilibrium point 
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. We have already seen that the system may be approximated in the neighbourhood of the equilibrium point by the linear system
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where J is the Jacobian matrix
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Look at the tr- det diagram for linear systems. The boundary lines for stability are 
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 and 
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. Since linearisation is an approximation it is when the trace and determinant of the Jacobian matrix lie on the boundary lines between stability and non-stability and the system is, therefore, very sensitive to small changes that there are likely to be differences in the long term behaviour of a nonlinear system and its linearisation. You already know that if 
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 the linear system is non simple and without further investigation nothing can be deduced about the behaviour of the system close to an equilibrium point. Likewise a nonlinear system is not a simple system if its linearisation is non simple and we are, therefore, unable to classify its equilibrium points from its linearisation. The stability under the condition 
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 needs careful investigation. 

Investigation 1

Consider again the competing species model 
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with equilibrium points 
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Here is its phase plane diagram.
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You are going to compare the phase portraits of the nonlinear system close to its equilibrium points with those of its linearisations.

You will need to use the material  on the web for this investigation.

This investigation suggests that the behaviour of a nonlinear system close to an equilibrium point mimics the behaviour of its linearisation. The extent to which this is true is summarised in the following important theorem,  proofs of which were published  independently by the American mathematician Philip Hartman (1964) and the Soviet mathematician David Grobman (1965).

2.2.2
Hartman Grobman linearisation theorem

If the linearisation matrix J has no zero or purely imaginary eigenvalues, then the phase portrait for the nonlinear system near an equilibrium point is similar to the phase portrait of its linearisation.

This theorem tells us that:

· If a linear system has a zero eigenvalue we can deduce nothing about the nonlinear system. A zero eigenvalue corresponds to the line 
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 in the tr-det diagram and the system is  therefore, non simple. 

· If the linear system has purely imaginary eigenvalues we can deduce nothing about the corresponding non linear system. For purely imaginary eigenvalues the linearisation is a centre. Hence, if the linearisation is a centre we are unable to learn anything about the non linear system from its linearisation.

· If the linearisation shows a stable node or stable focus then all solutions of the linearised system approach (0,0) as t
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. Hence for the non linear system solutions which start near the equilibrium point approach it as t
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and the equilibrium point is an attractor and  stable.

· If the linearisation shows an unstable node or an unstable focus all solutions  move away from (0,0) and are unbounded. Hence for the nonlinear system all points which start close to the equilibrium point move away from it and the equilibrium point is a repeller and  unstable.

· If the linearisation shows a saddle then some solutions approach (0,0) as t
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 and others move away from it. Hence the non linear system shows similar behaviour close to an equilibrium point and the equilibrium point is a nonlinear saddle and unstable.

Explanation of the results obtained in investigation 1 in terms of the linearisation theorem.
First we need to calculate the linearisations at each equilibrium point.
To calculate the Jacobian matrices

Let
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 Therefore
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· At the point 
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so the eigenvalues are real and negative and the linearisation at the point 
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 is a stable node and  by the linearisation theorem the nonlinear system mimics this behaviour close to the equilibrium point and, therefore, the nonlinear equilibrium point is an attractor and stable;

· At the point 
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so the eigenvalues are real and positive and the linearisation at the point 
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 is an unstable node and by the linearisation theorem the nonlinear system mimics this behaviour close to the equilibrium point and, therefore, the nonlinear equilibrium point is a repeller and unstable.

· At the point 
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so the eigenvalues are real with one positive and one negative and the linearisation at the point  (20,40) is a saddle point and  by the linearisation theorem the nonlinear system mimics this behaviour close to the equilibrium point and, therefore, the nonlinear equilibrium point is a nonlinear saddle and unstable.

· At the point 
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so the eigenvalues are both negative and the  linearisation at the point  
[image: image39.wmf]0
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 is a stable improper node and  by the linearisation theorem the nonlinear system mimics this behaviour close to the equilibrium point and, therefore, the nonlinear equilibrium point is an attractor and stable.

· Worked Example 1

Here is a worked example based on the linearisation  theorem. There is a parallel example for you written for the web for those who prefer to use Maple.

Consider the nonlinear system
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(1) Find the equilibrium points of the system and classify its linearisation.

(2) What does this tell you about the stability of the nonlinear system?

(3) Verify your answer to (2) by  looking at  the phase plane diagram of the nonlinear system near its equilibrium points.

Find the equilibrium points

[image: image42.wmf]&

x

x

y

x

=

+

-

=

2

0



[image: image43.wmf]&

y

x

y

=

-

+

=

0


Therefore 
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The equilibrium points are 
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Find the Jacobian matrix.

Let  
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Stability at the point 
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The eigenvalues are imaginary with positive real parts and the linearisation is an unstable focus. By the linearisation theorem the nonlinear system mimics this behaviour and the point 
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 is a repeller and unstable.

Stability at  the point 
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The eigenvalues are real and of opposite signs so the linearisation is an unstable saddle.

By the linearisation theorem the nonlinear system mimics this behaviour and the point 
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is a nonlinear saddle and unstable.
These results can be verified by examining the phase plane diagram of the nonlinear system. You will find the program for this at the end of  the Maple version of the worked example.

2.2.3
Limitations of the Hartman Grobman linearisation theorem. 

Note that the Hartman-Grobman theorem has two serious limitations. First it tells us nothing when the linearisation is non simple or a centre. Secondly, when the theorem does apply it provides information only about the behaviour of solutions near the equilibria. In order to make global predictions we need more information. These limitations will be illustrated in the following investigations.

Investigation 2

To investigate solutions of a nonlinear system when the linearisation is a centre. 

You will need to use the material on the web for this investigation. You are going to plot the phase diagrams of the nonlinear system close to its equilibrium point and the phase diagram of its linearisation and compare them.

You will see that the phase diagram for the linearisation shows a centre where as the phase diagram for the nonlinear system shows an unstable equilibrium point with the trajectories spiralling away from its equilibrium point.

Thus if the equilibrium point of the linearisation is a centre further analysis is necessary to determine the stability of the equilibrium point of  the nonlinear system.

Investigation 3.

To look at the global phase portrait of a nonlinear system.

You will need to use the material on the web for this investigation. You are going to plot the phase diagrams of the nonlinear system both close to its equilibrium point and also over a wider range of values of x and y and compare them.

You will see that locally the phase portrait shows that the equilibrium point is a stable attractor  where as the global portrait shows the existence of a closed trajectory. This is an example of a limit cycle which will be discussed in the next unit.

2.2.4
Summary

(1) If the linearisation is a stable node or stable focus the equilibrium point of the nonlinear system is an attractor and stable. 

(2) If the linearisation is an unstable node or unstable focus the equilibrium point of the nonlinear system is a repeller and unstable 

(3) If the linearisation shows a saddle then the nonlinear system is a nonlinear saddle and is unstable

(4) If the linearisation shows a centre it is not yet possible to determine the nature of the equilibrium point of the nonlinear system.

(5) If the linearisation is a non simple system the nonlinear system is also classed as non simple and we are unable to classify the system from its linearisation.

· Worked Example 2

Here is another  worked example for you to look at. There is a parallel example on the web for those who prefer to use Maple.

 Find the equilibria of
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 and determine their stability

To find the equilibria        
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Therefore the equilibria are 
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Find  the Jacobian matrix 

Let 
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Stability at the point 
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 so the linearisation is nonsimple and so nothing can be deduced about the equilibrium point of the nonlinear system from its linearisation. The phase portrait (which you will plot at the end of this example) suggests the equilibrium point is unstable.
Stability at the point 
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so the linearisation is a stable node and by the linearisation theorem the equilibrium point of the nonlinear system is an attractor and stable.

Stability at the point 
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 so the linearisation is a saddle and by the linearisation theorem the equilibrium point of the nonlinear system is a nonlinear saddle and unstable.

Phase portrait

Plot the phase diagram for the system. You will find the program for this at the end of the parallel Maple example.  Examine it carefully and check that it confirms the above analysis.

2.2.5 Examples 1
Use the Linearisation Theorem to classify where possible the equilibrium points of the following systems.
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